Post-processing in solar forecasting: Ten overarching thinking tools
Tài liệu tham khảo
Murphy, 1993, What is a good forecast? An essay on the nature of goodness in weather forecasting, Weather Forecast., 8, 281, 10.1175/1520-0434(1993)008<0281:WIAGFA>2.0.CO;2
Yang, 2018, History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining, Solar Energy, 168, 60, 10.1016/j.solener.2017.11.023
Hong, 2016, Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond, Int J Forecast, 32, 896, 10.1016/j.ijforecast.2016.02.001
Yang, 2019, A guideline to solar forecasting research practice: Reproducible, operational, probabilistic or physically-based, ensemble, and skill (ROPES), J. Renew. Sustain. Energy, 11, 10.1063/1.5087462
Hong, 2020, Energy forecasting: A review and outlook, IEEE Open Access J Power Energy, 7, 376, 10.1109/OAJPE.2020.3029979
Nouri, 2019, Cloud height and tracking accuracy of three all sky imager systems for individual clouds, Solar Energy, 177, 213, 10.1016/j.solener.2018.10.079
Larson, 2013, Forecasting solar irradiance with numerical weather prediction models, 299
Jones, 2013, Data assimilation in numerical weather prediction and sample applications, 319
Makridakis, 2020, Forecasting in social settings: The state of the art, Int J Forecast, 36, 15, 10.1016/j.ijforecast.2019.05.011
van der Meer, 2018, Review on probabilistic forecasting of photovoltaic power production and electricity consumption, Renew Sustain Energy Rev, 81, 1484, 10.1016/j.rser.2017.05.212
Hammer, 1999, Short-term forecasting of solar radiation: A statistical approach using satellite data, Solar Energy, 67, 139, 10.1016/S0038-092X(00)00038-4
Chow, 2011, Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed, Solar Energy, 85, 2881, 10.1016/j.solener.2011.08.025
Mathiesen, 2011, Evaluation of numerical weather prediction for intra-day solar forecasting in the continental united states, Solar Energy, 85, 967, 10.1016/j.solener.2011.02.013
Perez, 2013, Comparison of numerical weather prediction solar irradiance forecasts in the US, Canada and Europe, Solar Energy, 94, 305, 10.1016/j.solener.2013.05.005
Roulston, 2003, Combining dynamical and statistical ensembles, Tellus A, 55, 16, 10.3402/tellusa.v55i1.12082
Bougeault, 2010, The THORPEX interactive grand global ensemble, Bull Am Meteorol Soc, 91, 1059, 10.1175/2010BAMS2853.1
Gneiting, 2013, Combining predictive distributions, Electron J Stat, 7, 1747, 10.1214/13-EJS823
Lauret, 2019, Verification of solar irradiance probabilistic forecasts, Solar Energy, 194, 254, 10.1016/j.solener.2019.10.041
Inman, 2013, Solar forecasting methods for renewable energy integration, Prog Energy Combust Sci, 39, 535, 10.1016/j.pecs.2013.06.002
Kleissl, 2013
Polo, 2020, Benchmarking on improvement and site-adaptation techniques for modeled solar radiation datasets, Solar Energy, 201, 469, 10.1016/j.solener.2020.03.040
Box, 2015
Hyndman, 2008
Yang, 2017, Reconciling solar forecasts: Temporal hierarchy, Solar Energy, 158, 332, 10.1016/j.solener.2017.09.055
Athanasopoulos, 2017, Forecasting with temporal hierarchies, Eur J Oper Res, 262, 60, 10.1016/j.ejor.2017.02.046
Kazantzidis, 2017, Short-term forecasting based on all-sky cameras, 153
Peng, 2015, 3d cloud detection and tracking system for solar forecast using multiple sky imagers, Solar Energy, 118, 496, 10.1016/j.solener.2015.05.037
Nguyen, 2014, Stereographic methods for cloud base height determination using two sky imagers, Solar Energy, 107, 495, 10.1016/j.solener.2014.05.005
Chu, 2015, Real-time forecasting of solar irradiance ramps with smart image processing, Solar Energy, 114, 91, 10.1016/j.solener.2015.01.024
Chu, 2017, Net load forecasts for solar-integrated operational grid feeders, Solar Energy, 158, 236, 10.1016/j.solener.2017.09.052
Chu, 2015, Short-term reforecasting of power output from a 48 MWe solar PV plant, Solar Energy, 112, 68, 10.1016/j.solener.2014.11.017
Blanc, 2017, Short-term forecasting of high resolution local DNI maps with multiple fish-eye cameras in stereoscopic mode, AIP Conf. Proc., 1850, 10.1063/1.4984512
Tukey, 1977
Yang, 2014, Solar irradiance forecasting using a ground-based sky imager developed at UC San Diego, Solar Energy, 103, 502, 10.1016/j.solener.2014.02.044
Chow, 2015, Cloud motion and stability estimation for intra-hour solar forecasting, Solar Energy, 115, 645, 10.1016/j.solener.2015.03.030
Miller, 2018, Short-term solar irradiance forecasting via satellite/model coupling, Solar Energy, 168, 102, 10.1016/j.solener.2017.11.049
Blanc, 2017, Short-term solar power forecasting based on satellite images, 179
Wu, 2019, Advances in quantitative remote sensing product validation: Overview and current status, Earth-Sci Rev, 196, 102875, 10.1016/j.earscirev.2019.102875
Molero, 2018, Multi-timescale analysis of the spatial representativeness of in situ soil moisture data within satellite footprints, J. Geophys. Res.: Atmos., 123, 3, 10.1002/2017JD027478
Yang, 2020, Quantifying the spatial scale mismatch between satellite-derived solar irradiance and in situ measurements: A case study using CERES synoptic surface shortwave flux and the Oklahoma Mesonet, J. Renew. Sustain. Energy, 12, 10.1063/5.0025771
Perez, 2012, Short-term irradiance variability: Preliminary estimation of station pair correlation as a function of distance, Solar Energy, 86, 2170, 10.1016/j.solener.2012.02.027
Antonanzas-Torres, 2014, Downscaling of global solar irradiation in complex areas in R, J. Renew. Sustain. Energy, 6, 10.1063/1.4901539
Gueymard, 2020, Worldwide validation of CAMS and MERRA-2 reanalysis aerosol optical depth products using 15 years of AERONET observations, Atmos Environ, 225, 117216, 10.1016/j.atmosenv.2019.117216
Dambreville, 2014, Very short term forecasting of the global horizontal irradiance using a spatio-temporal autoregressive model, Renew Energy, 72, 291, 10.1016/j.renene.2014.07.012
Yang, 2013, Solar irradiance forecasting using spatial-temporal covariance structures and time-forward kriging, Renew Energy, 60, 235, 10.1016/j.renene.2013.05.030
Yang, 2015, Very short term irradiance forecasting using the lasso, Solar Energy, 114, 314, 10.1016/j.solener.2015.01.016
Cressie, 2015
Polo, 2016, Preliminary survey on site-adaptation techniques for satellite-derived and reanalysis solar radiation datasets, Solar Energy, 132, 25, 10.1016/j.solener.2016.03.001
Wu, 2020, On the parameterization of convective downdrafts for marine stratocumulus clouds, Mon. Weather Rev., 148, 1931, 10.1175/MWR-D-19-0292.1
Wu, 2018, Coastal stratocumulus cloud edge forecasts, Solar Energy, 164, 355, 10.1016/j.solener.2018.02.072
Sahu, 2018, Assimilating observations to simulate marine layer stratocumulus for solar forecasting, Solar Energy, 162, 454, 10.1016/j.solener.2018.01.006
Jimenez, 2016, WRF-solar: Description and clear-sky assessment of an augmented NWP model for solar power prediction, Bull Am Meteorol Soc, 97, 1249, 10.1175/BAMS-D-14-00279.1
Lorenz, 2009, Irradiance forecasting for the power prediction of grid-connected photovoltaic systems, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2, 2, 10.1109/JSTARS.2009.2020300
Glahn, 1972, The use of model output statistics (MOS) in objective weather forecasting, J Appl Meteorol, 11, 1203, 10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2
Pereira, 2019, Development of an ANN based corrective algorithm of the operational ECMWF global horizontal irradiation forecasts, Solar Energy, 185, 387, 10.1016/j.solener.2019.04.070
Lauret, 2016, Solar forecasting in a challenging insular context, Atmosphere, 7, 18, 10.3390/atmos7020018
Verzijlbergh, 2015, Improved model output statistics of numerical weather prediction based irradiance forecasts for solar power applications, Solar Energy, 118, 634, 10.1016/j.solener.2015.06.005
Verbois, 2018, Solar irradiance forecasting in the tropics using numerical weather prediction and statistical learning, Solar Energy, 162, 265, 10.1016/j.solener.2018.01.007
Pierro, 2015, Model output statistics cascade to improve day ahead solar irradiance forecast, Solar Energy, 117, 99, 10.1016/j.solener.2015.04.033
Rincón, 2018, Bias correction of global irradiance modelled with weather and research forecasting model over paraguay, Solar Energy, 170, 201, 10.1016/j.solener.2018.05.061
Yang, 2019, Post-processing of NWP forecasts using ground or satellite-derived data through kernel conditional density estimation, J. Renew. Sustain. Energy, 11, 10.1063/1.5088721
Mejia, 2018, Conditional summertime day-ahead solar irradiance forecast, Solar Energy, 163, 610, 10.1016/j.solener.2018.01.094
Yang, 2020, Worldwide validation of 8 satellite-derived and reanalysis solar radiation products: A preliminary evaluation and overall metrics for hourly data over 27years, Solar Energy, 210, 3, 10.1016/j.solener.2020.04.016
Yang, 2019, Can we gauge forecasts using satellite-derived solar irradiance?, J. Renew. Sustain. Energy, 11, 10.1063/1.5087588
Yagli, 2020, Can we justify producing univariate machine-learning forecasts with satellite-derived solar irradiance?, Appl Energy, 259, 114122, 10.1016/j.apenergy.2019.114122
Soubdhan, 2016, A robust forecasting framework based on the Kalman filtering approach with a twofold parameter tuning procedure: Application to solar and photovoltaic prediction, Solar Energy, 131, 246, 10.1016/j.solener.2016.02.036
Pelland, 2013, Solar and photovoltaic forecasting through post-processing of the Global Environmental Multiscale numerical weather prediction model, Prog. Photovolt., Res. Appl., 21, 284, 10.1002/pip.1180
Diagne, 2014, Post-processing of solar irradiance forecasts from WRF model at Reunion Island, Solar Energy, 105, 99, 10.1016/j.solener.2014.03.016
Yang, 2019, On post-processing day-ahead NWP forecasts using Kalman filtering, Solar Energy, 182, 179, 10.1016/j.solener.2019.02.044
Delle Monache, 2011, Kalman filter and analog schemes to postprocess numerical weather predictions, Mon. Weather Rev., 139, 3554, 10.1175/2011MWR3653.1
Makarov, 2011, Incorporating uncertainty of wind power generation forecast into power system operation, dispatch, and unit commitment procedures, IEEE Trans. Sustain. Energy, 2, 433, 10.1109/TSTE.2011.2159254
Makarov, 2010
Yang, 2019, Operational solar forecasting for the real-time market, Int J Forecast, 35, 1499, 10.1016/j.ijforecast.2019.03.009
Fernández Peruchena, 2017, Dynamic Paths: Towards high frequency direct normal irradiance forecasts, Energy, 132, 315, 10.1016/j.energy.2017.05.101
Mueen, 2017
Yeh, 2016, Matrix Profile I: All pairs similarity joins for time series: A unifying view that includes motifs, discords and shapelets, 1317
Rakthanmanon, 2012, Searching and mining trillions of time series subsequences under dynamic time warping, 262
Bright, 2015, Stochastic generation of synthetic minutely irradiance time series derived from mean hourly weather observation data, Solar Energy, 115, 229, 10.1016/j.solener.2015.02.032
Frimane, 2019, Nonparametric Bayesian-based recognition of solar irradiance conditions: Application to the generation of high temporal resolution synthetic solar irradiance data, Solar Energy, 182, 462, 10.1016/j.solener.2019.02.052
Bright, 2019, The impact of globally diverse GHI training data: Evaluation through application of a simple Markov chain downscaling methodology, J. Renew. Sustain. Energy, 11, 10.1063/1.5085236
Frimane, 2020, Dirichlet downscaling model for synthetic solar irradiance time series, J. Renew. Sustain. Energy, 12, 10.1063/5.0028267
Munkhammar, 2018, An N-state Markov-chain mixture distribution model of the clear-sky index, Solar Energy, 173, 487, 10.1016/j.solener.2018.07.056
Munkhammar, 2019, Probabilistic forecasting of high-resolution clear-sky index time-series using a Markov-chain mixture distribution model, Solar Energy, 184, 688, 10.1016/j.solener.2019.04.014
Perez, 2011, Parameterization of site-specific short-term irradiance variability, Solar Energy, 85, 1343, 10.1016/j.solener.2011.03.016
Lave, 2012, High-frequency irradiance fluctuations and geographic smoothing, Solar Energy, 86, 2190, 10.1016/j.solener.2011.06.031
Yang, 2012, Hourly solar irradiance time series forecasting using cloud cover index, Solar Energy, 86, 3531, 10.1016/j.solener.2012.07.029
Yang, 2015, Forecasting of global horizontal irradiance by exponential smoothing, using decompositions, Energy, 81, 111, 10.1016/j.energy.2014.11.082
Gneiting, 2011, Making and evaluating point forecasts, J. Amer. Statist. Assoc., 106, 746, 10.1198/jasa.2011.r10138
Jolliffe, 2008, The impenetrable hedge: A note on propriety, equitability and consistency, Meteorological Applications, 15, 25, 10.1002/met.60
Voyant, 2017, Machine learning methods for solar radiation forecasting: A review, Renew Energy, 105, 569, 10.1016/j.renene.2016.12.095
Ferlito, 2017, Comparative analysis of data-driven methods online and offline trained to the forecasting of grid-connected photovoltaic plant production, Appl Energy, 205, 116, 10.1016/j.apenergy.2017.07.124
Pedro, 2019, A comprehensive dataset for the accelerated development and benchmarking of solar forecasting methods, J. Renew. Sustain. Energy, 11, 10.1063/1.5094494
Srivastava, 2018, A comparative study of LSTM neural networks in forecasting day-ahead global horizontal irradiance with satellite data, Solar Energy, 162, 232, 10.1016/j.solener.2018.01.005
Bergmeir, 2016, Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation, Int J Forecast, 32, 303, 10.1016/j.ijforecast.2015.07.002
Yang, 2020, Choice of clear-sky model in solar forecasting, J. Renew. Sustain. Energy, 12, 10.1063/5.0003495
Gueymard, 2008, REST2: High-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation – Validation with a benchmark dataset, Solar Energy, 82, 272, 10.1016/j.solener.2007.04.008
Lefèvre, 2013, McClear: a new model estimating downwelling solar radiation at ground level in clear-sky conditions, Atmos Meas Tech, 6, 2403, 10.5194/amt-6-2403-2013
Yang, 2017, On adding and removing sensors in a solar irradiance monitoring network for areal forecasting and PV system performance evaluation, Solar Energy, 155, 1417, 10.1016/j.solener.2017.07.061
Bates, 1969, The combination of forecasts, J Oper Res Soc, 20, 451, 10.1057/jors.1969.103
Clemen, 1989, Combining forecasts: A review and annotated bibliography, Int J Forecast, 5, 559, 10.1016/0169-2070(89)90012-5
Diebold, 1989, Forecast combination and encompassing: Reconciling two divergent literatures, Int J Forecast, 5, 589, 10.1016/0169-2070(89)90014-9
Diebold, 1996, Forecast evaluation and combination, 241, 10.1016/S0169-7161(96)14010-4
de Menezes, 2000, Review of guidelines for the use of combined forecasts, Eur J Oper Res, 120, 190, 10.1016/S0377-2217(98)00380-4
Armstrong, 2001, Combining forecasts, 417
Timmermann, 2006, Forecast combinations, 135, 10.1016/S1574-0706(05)01004-9
Wallis, 2011, Combining forecasts – Forty years later, Appl Financ Econ, 21, 33, 10.1080/09603107.2011.523179
Atiya, 2020, Why does forecast combination work so well?, Int J Forecast, 36, 197, 10.1016/j.ijforecast.2019.03.010
Blanc, 2016, When to choose the simple average in forecast combination, J Bus Res, 69, 3951, 10.1016/j.jbusres.2016.05.013
Genre, 2013, Combining expert forecasts: Can anything beat the simple average?, Int J Forecast, 29, 108, 10.1016/j.ijforecast.2012.06.004
Yagli, 2019, Automatic hourly solar forecasting using machine learning models, Renew Sustain Energy Rev, 105, 487, 10.1016/j.rser.2019.02.006
André, 2019, Preliminary assessment of two spatio-temporal forecasting technics for hourly satellite-derived irradiance in a complex meteorological context, Solar Energy, 177, 703, 10.1016/j.solener.2018.11.010
Huang, 2018, Assessing model performance of daily solar irradiance forecasts over Australia, Solar Energy, 176, 615, 10.1016/j.solener.2018.10.080
Haupt, 2017, Variable generation power forecasting as a big data problem, IEEE Trans. Sustain. Energy, 8, 725, 10.1109/TSTE.2016.2604679
Weiss, 2018, Forecast combinations in R using the ForecastComb package, R J., 10, 262, 10.32614/RJ-2018-052
Hastie, 2009
Miller, 2002
Thorey, 2015, Ensemble forecast of solar radiation using TIGGE weather forecasts and HelioClim database, Solar Energy, 120, 232, 10.1016/j.solener.2015.06.049
Yang, 2018, Ultra-fast preselection in lasso-type spatio-temporal solar forecasting problems, Solar Energy, 176, 788, 10.1016/j.solener.2018.08.041
Rodríguez-Benítez, 2020, A short-term solar radiation forecasting system for the Iberian Peninsula. Part 1: Models description and performance assessment, Solar Energy, 195, 396, 10.1016/j.solener.2019.11.028
Huertas-Tato, 2020, A short-term solar radiation forecasting system for the Iberian Peninsula. Part 2: Model blending approaches based on machine learning, Solar Energy, 195, 685, 10.1016/j.solener.2019.11.091
Yang, 2018, Operational photovoltaics power forecasting using seasonal time series ensemble, Solar Energy, 166, 529, 10.1016/j.solener.2018.02.011
Yang, 2019, An ultra-fast way of searching weather analogs for renewable energy forecasting, Solar Energy, 185, 255, 10.1016/j.solener.2019.03.068
Kyung, 2010, Penalized regression, standard errors, and bayesian lassos, Bayesian Anal, 5, 369
Lorenz, 1969, Atmospheric predictability as revealed by naturally occurring analogues, J. Atmos. Sci., 26, 636, 10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2
Hong, 2016, Probabilistic electric load forecasting: A tutorial review, Int J Forecast, 32, 914, 10.1016/j.ijforecast.2015.11.011
Pedro, 2015, Nearest-neighbor methodology for prediction of intra-hour global horizontal and direct normal irradiances, Renew Energy, 80, 770, 10.1016/j.renene.2015.02.061
Alessandrini, 2015, An analog ensemble for short-term probabilistic solar power forecast, Appl Energy, 157, 95, 10.1016/j.apenergy.2015.08.011
Alessandrini, 2015, A novel application of an analog ensemble for short-term wind power forecasting, Renew Energy, 76, 768, 10.1016/j.renene.2014.11.061
Junk, 2015, Predictor-weighting strategies for probabilistic wind power forecasting with an analog ensemble, Meteorol Z, 24, 361, 10.1127/metz/2015/0659
Junk, 2015, Analog-based ensemble model output statistics, Mon. Weather Rev., 143, 2909, 10.1175/MWR-D-15-0095.1
Davò, 2016, Post-processing techniques and principal component analysis for regional wind power and solar irradiance forecasting, Solar Energy, 134, 327, 10.1016/j.solener.2016.04.049
Watanabe, 2019, Prediction of time series for several hours of surface solar irradiance using one-granule cloud property data from satellite observations, Solar Energy, 186, 113, 10.1016/j.solener.2019.05.004
Hyndman, 2015, Large-scale unusual time series detection, 1616
Wang, 2006, Characteristic-based clustering for time series data, Data Min Knowl Discov, 13, 335, 10.1007/s10618-005-0039-x
Kang, 2017, Visualising forecasting algorithm performance using time series instance spaces, Int J Forecast, 33, 345, 10.1016/j.ijforecast.2016.09.004
Yang, 2017, Analyzing big time series data in solar engineering using features and PCA, Solar Energy, 153, 317, 10.1016/j.solener.2017.05.072
Yang, 2016, Spatial data dimension reduction using quadtree: A case study on satellite-derived solar radiation, 3807
Ayet, 2018, Nowcasting solar irradiance using an analog method and geostationary satellite images, Solar Energy, 164, 301, 10.1016/j.solener.2018.02.068
Yang, 2014, Solar irradiance forecasting using spatio-temporal empirical kriging and vector autoregressive models with parameter shrinkage, Solar Energy, 103, 550, 10.1016/j.solener.2014.01.024
Yang, 2018, Kriging for NSRDB PSM version 3 satellite-derived solar irradiance, Solar Energy, 171, 876, 10.1016/j.solener.2018.06.055
Cervone, 2017, Short-term photovoltaic power forecasting using artificial neural networks and an analog ensemble, Renew Energy, 108, 274, 10.1016/j.renene.2017.02.052
Yang, 2019, Ultra-fast analog ensemble using kd-tree, J. Renew. Sustain. Energy, 11, 10.1063/1.5124711
Bentley, 1975, Multidimensional binary search trees used for associative searching, Commun ACM, 18, 509, 10.1145/361002.361007
Arya, 2019
Mount, 2010
Gneiting, 2007, Probabilistic forecasts, calibration and sharpness, J. R. Stat. Soc. Ser. B Stat. Methodol., 69, 243, 10.1111/j.1467-9868.2007.00587.x
David, 2018, Comparison of intraday probabilistic forecasting of solar irradiance using only endogenous data, Int J Forecast, 34, 529, 10.1016/j.ijforecast.2018.02.003
Pinson, 2010, Conditional prediction intervals of wind power generation, IEEE Trans. Power Syst., 25, 1845, 10.1109/TPWRS.2010.2045774
Yang, 2020, Reconciling solar forecasts: Probabilistic forecast reconciliation in a nonparametric framework, Solar Energy, 210, 49, 10.1016/j.solener.2020.03.095
Athanasopoulos G, Gamakumara P, Panagiotelis A, Hyndman RJ, Affan M et al. Hierarchical forecasting. In: Working paper 02/19. Department of Econometrics and Business Statistics. Monash University; 2019.
Grantham, 2016, Nonparametric short-term probabilistic forecasting for solar radiation, Solar Energy, 133, 465, 10.1016/j.solener.2016.04.011
Pinson, 2004, On-line assessment of prediction risk for wind power production forecasts, Wind Energy, 7, 119, 10.1002/we.114
Wasserman, 2013
Stasinopoulos, 2015
Brabec, 2015, Tailored vs black-box models for forecasting hourly average solar irradiance, Solar Energy, 111, 320, 10.1016/j.solener.2014.11.003
Bakker, 2019, Comparison of statistical post-processing methods for probabilistic NWP forecasts of solar radiation, Solar Energy, 191, 138, 10.1016/j.solener.2019.08.044
Koenker, 2005
Nagy, 2016, GEFCom2014: Probabilistic solar and wind power forecasting using a generalized additive tree ensemble approach, Int J Forecast, 32, 1087, 10.1016/j.ijforecast.2015.11.013
Murphy, 1987, A general framework for forecast verification, Mon. Weather Rev., 115, 1330, 10.1175/1520-0493(1987)115<1330:AGFFFV>2.0.CO;2
Rosenblatt, 1952, Remarks on a multivariate transformation, Ann Math Stat, 23, 470, 10.1214/aoms/1177729394
Raftery, 2005, Using Bayesian model averaging to calibrate forecast ensembles, Mon. Weather Rev., 133, 1155, 10.1175/MWR2906.1
Gneiting, 2005, Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation, Mon. Weather Rev., 133, 1098, 10.1175/MWR2904.1
Sperati, 2016, An application of the ECMWF Ensemble Prediction System for short-term solar power forecasting, Solar Energy, 133, 437, 10.1016/j.solener.2016.04.016
Yang, 2020, Ensemble model output statistics as a probabilistic site-adaptation tool for satellite-derived and reanalysis solar irradiance, J. Renew. Sustain. Energy, 12, 10.1063/1.5134731
Yang, 2020, Ensemble model output statistics as a probabilistic site-adaptation tool for solar irradiance: A revisit, J. Renew. Sustain. Energy, 12, 10.1063/5.0010003
Quan, 2020, Probabilistic solar irradiance transposition models, Renew Sustain Energy Rev, 125, 109814, 10.1016/j.rser.2020.109814
Yang, 2020, Ensemble model output statistics for the separation of direct and diffuse components from 1-min global irradiance, Solar Energy, 208, 591, 10.1016/j.solener.2020.05.082
Hollands, 2013, A three-state model for the probability distribution of instantaneous solar radiation, with applications, Solar Energy, 96, 103, 10.1016/j.solener.2013.07.007
Gneiting, 2006, Calibrated probabilistic forecasting at the Stateline Wind Energy Center, J. Amer. Statist. Assoc., 101, 968, 10.1198/016214506000000456
Yagli, 2020, Ensemble solar forecasting using data-driven models with probabilistic post-processing through GAMLSS, Solar Energy, 208, 612, 10.1016/j.solener.2020.07.040
Alessandrini, 2013, A comparison between the ECMWF and COSMO Ensemble Prediction Systems applied to short-term wind power forecasting on real data, Appl Energy, 107, 271, 10.1016/j.apenergy.2013.02.041
Wang, 2005, Improvement of ensemble reliability with a new dressing kernel, Q. J. R. Meteorol. Soc., 131, 965, 10.1256/qj.04.120
Fortin, 2006, Probabilistic forecasting from ensemble prediction systems: Improving upon the best-member method by using a different weight and dressing kernel for each member, Q. J. R. Meteorol. Soc., 132, 1349, 10.1256/qj.05.167
Aryaputera AW, Verbois H, Walsh WM. Probabilistic accumulated irradiance forecast for Singapore using ensemble techniques. In: 2016 IEEE 43rd photovoltaic specialists conference. 2016, p.1113–8.
Doubleday, 2020, 1
Bremnes, 2004, Probabilistic forecasts of precipitation in terms of quantiles using NWP model output, Mon. Weather Rev., 132, 338, 10.1175/1520-0493(2004)132<0338:PFOPIT>2.0.CO;2
BenBouallègue, 2017, Statistical postprocessing of ensemble global radiation forecasts with penalized quantile regression, Meteorol Z, 26, 253, 10.1127/metz/2016/0748
Cannon, 2011, Quantile regression neural networks: Implementation in R and application to precipitation downscaling, Comput Geosci, 37, 1277, 10.1016/j.cageo.2010.07.005
Huber, 1973, Robust regression: asymptotics, conjectures and monte carlo, Ann Stat, 1, 799, 10.1214/aos/1176342503
Huber, 1964, Robust estimation of a location parameter, Ann Math Stat, 35, 73, 10.1214/aoms/1177703732
Massidda, 2018, Quantile regression post-processing of weather forecast for short-term solar power probabilistic forecasting, Energies, 11, 1763, 10.3390/en11071763
Meinshausen, 2006, Quantile regression forests, J. Mach. Learn. Res., 7, 983
Taillardat, 2016, Calibrated ensemble forecasts using quantile regression forests and ensemble model output statistics, Mon. Weather Rev., 144, 2375, 10.1175/MWR-D-15-0260.1
Bremnes, 2019, Constrained quantile regression splines for ensemble postprocessing, Mon. Weather Rev., 147, 1769, 10.1175/MWR-D-18-0420.1
Bremnes, 2020, Ensemble postprocessing using quantile function regression based on neural networks and Bernstein polynomials, Mon. Weather Rev., 148, 403, 10.1175/MWR-D-19-0227.1
Stone, 1961, The opinion pool, Ann Math Stat, 32, 1339, 10.1214/aoms/1177704873
Winkler, 2019, Probability forecasts and their combination: A research perspective, Decis Anal, 16, 239, 10.1287/deca.2019.0391
Jose, 2014, Trimmed opinion pools and the crowd’s calibration problem, Manage. Sci., 60, 463, 10.1287/mnsc.2013.1781
Grushka-Cockayne, 2017, Ensembles of overfit and overconfident forecasts, Manage. Sci., 63, 1110, 10.1287/mnsc.2015.2389
Wang, 2019, Combining probabilistic load forecasts, IEEE Trans. Smart Grid, 10, 3664, 10.1109/TSG.2018.2833869
Gaba, 2017, Combining interval forecasts, Decis Anal, 14, 1, 10.1287/deca.2016.0340
Grushka-Cockayne, 2020, Combining prediction intervals in the M4 competition, Int J Forecast, 36, 178, 10.1016/j.ijforecast.2019.04.015
Taleb, 2020, Foreword to the M4 Competition, Int J Forecast, 36, 1, 10.1016/j.ijforecast.2019.05.003
Petropoulos, 2020, The M4 competition: Bigger. Stronger. Better, Int J Forecast, 36, 3, 10.1016/j.ijforecast.2019.05.005
Hong, 2020, Forecasting with high frequency data: M4 competition and beyond, Int J Forecast, 36, 191, 10.1016/j.ijforecast.2019.03.013
Winkler, 1968, The consensus of subjective probability distributions, Manage. Sci., 15, B61, 10.1287/mnsc.15.2.B61
Mitchell, 2005, Evaluating, comparing and combining density forecasts using the KLIC with an Application to the Bank of England and NIESR ‘fan’ charts of inflation, Oxford Bull Econ Stat, 67, 995, 10.1111/j.1468-0084.2005.00149.x
Garratt, 2011, Real-time inflation forecast densities from ensemble Phillips curves, North Am J Econ Finance, 22, 77, 10.1016/j.najef.2010.09.003
Li, 2020, Combining probability density forecasts for power electrical loads, IEEE Trans. Smart Grid, 11, 1679, 10.1109/TSG.2019.2942024
Bracale, 2017, A probabilistic competitive ensemble method for short-term photovoltaic power forecasting, IEEE Trans. Sustain. Energy, 8, 551, 10.1109/TSTE.2016.2610523
Thorey, 2018, Ensemble forecast of photovoltaic power with online CRPS learning, Int J Forecast, 34, 762, 10.1016/j.ijforecast.2018.05.007
Hora, 2004, Probability judgments for continuous quantities: Linear combinations and calibration, Manage. Sci., 50, 597, 10.1287/mnsc.1040.0205
Ranjan, 2010, Combining probability forecasts, J. R. Stat. Soc. Ser. B Stat. Methodol., 72, 71, 10.1111/j.1467-9868.2009.00726.x
Dawid, 1995, Coherent combination of experts’ opinions, TEST, 4, 263, 10.1007/BF02562628
Gneiting, 2007, Strictly proper scoring rules, prediction, and estimation, J. Amer. Statist. Assoc., 102, 359, 10.1198/016214506000001437
Bracale, 2019, Developing and comparing different strategies for combining probabilistic photovoltaic power forecasts in an ensemble method, Energies, 12, 1011, 10.3390/en12061011
Winkler, 1972, A decision-theoretic approach to interval estimation, J. Amer. Statist. Assoc., 67, 187, 10.1080/01621459.1972.10481224
Ni, 2017, An ensemble prediction intervals approach for short-term PV power forecasting, Solar Energy, 155, 1072, 10.1016/j.solener.2017.07.052
Pinson, 2014, Discussion of “Prediction intervals for short-term wind farm generation forecasts” and “Combined nonparametric prediction intervals for wind power generation”, IEEE Trans Sustain Energy, 5, 1019, 10.1109/TSTE.2014.2323851
Möller, 2016, Probabilistic temperature forecasting based on an ensemble autoregressive modification, Q. J. R. Meteorol. Soc., 142, 1385, 10.1002/qj.2741
Möller, 2020, Probabilistic temperature forecasting with a heteroscedastic autoregressive ensemble postprocessing model, Q. J. R. Meteorol. Soc., 146, 211, 10.1002/qj.3667
Fatemi, 2018, Parametric methods for probabilistic forecasting of solar irradiance, Renew Energy, 129, 666, 10.1016/j.renene.2018.06.022
Ghalanos, 2015
Wickramasuriya, 2019, Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization, J. Amer. Statist. Assoc., 114, 804, 10.1080/01621459.2018.1448825
Pinson, 2013, Wind energy: Forecasting challenges for its operational management, Statistical Science, 28, 564, 10.1214/13-STS445
Hong, 2019, Global energy forecasting competition 2017: Hierarchical probabilistic load forecasting, Int J Forecast, 35, 1389, 10.1016/j.ijforecast.2019.02.006
Yang, 2017, Reconciling solar forecasts: Geographical hierarchy, Solar Energy, 146, 276, 10.1016/j.solener.2017.02.010
Athanasopoulos, 2009, Hierarchical forecasts for Australian domestic tourism, Int J Forecast, 25, 146, 10.1016/j.ijforecast.2008.07.004
Hyndman, 2011, Optimal combination forecasts for hierarchical time series, Comput Stat Data Anal, 55, 2579, 10.1016/j.csda.2011.03.006
Hyndman, 2016, Fast computation of reconciled forecasts for hierarchical and grouped time series, Comput Stat Data Anal, 97, 16, 10.1016/j.csda.2015.11.007
Yagli, 2019, Reconciling solar forecasts: Sequential reconciliation, Solar Energy, 179, 391, 10.1016/j.solener.2018.12.075
Yagli, 2020, Reconciling solar forecasts: Probabilistic forecasting with homoscedastic Gaussian errors on a geographical hierarchy, Solar Energy, 210, 59, 10.1016/j.solener.2020.06.005
Yagli, 2018, Solar forecast reconciliation and effects of improved base forecasts, 2719
Marzban, 2010, Optical flow for verification, Weather Forecast., 25, 1479, 10.1175/2010WAF2222351.1
Gilleland, 2010, Verifying forecasts spatially, Bull Am Meteorol Soc, 91, 1365, 10.1175/2010BAMS2819.1
Gilleland, 2009, Intercomparison of spatial forecast verification methods, Weather Forecast., 24, 1416, 10.1175/2009WAF2222269.1
Ebert, 2009, Neighborhood verification: A strategy for rewarding close forecasts, Weather Forecast., 24, 1498, 10.1175/2009WAF2222251.1
Yang, 2018, A correct validation of the National Solar Radiation Data Base (NSRDB), Renew Sustain Energy Rev, 97, 152, 10.1016/j.rser.2018.08.023
Urraca, 2017, Quality control of global solar radiation data with satellite-based products, Solar Energy, 158, 49, 10.1016/j.solener.2017.09.032
Perez, 2017, Detecting calibration drift at ground truth stations a demonstration of satellite irradiance models’ accuracy, 1104
Nguyen, 2014, Spatio-temporal data fusion for very large remote sensing datasets, Technometrics, 56, 174, 10.1080/00401706.2013.831774
Nguyen, 2012, Spatial statistical data fusion for remote sensing applications, J. Amer. Statist. Assoc., 107, 1004, 10.1080/01621459.2012.694717
Yang, 2019, Producing high-quality solar resource maps by integrating high- and low-accuracy measurements using Gaussian processes, Renew Sustain Energy Rev, 113, 109260, 10.1016/j.rser.2019.109260
Zhang, 2013, Spatial modeling for refining and predicting surface potential mapping with enhanced resolution, Nanoscale, 5, 921, 10.1039/c2nr33603k
Xu, 2016, Adaptive robust polynomial regression for power curve modeling with application to wind power forecasting, Wind Energy, 19, 2321, 10.1002/we.1985
Lee, 2015, Power curve estimation with multivariate environmental factors for inland and offshore wind farms, J. Amer. Statist. Assoc., 110, 56, 10.1080/01621459.2014.977385
Jeon, 2012, Using conditional kernel density estimation for wind power density forecasting, J. Amer. Statist. Assoc., 107, 66, 10.1080/01621459.2011.643745
Pinson, 2009, Ensemble-based probabilistic forecasting at Horns Rev, Wind Energy, 12, 137, 10.1002/we.309
Yang, 2016, Solar radiation on inclined surfaces: Corrections and benchmarks, Solar Energy, 136, 288, 10.1016/j.solener.2016.06.062
Gueymard, 2016, Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance, Solar Energy, 128, 1, 10.1016/j.solener.2015.10.010
Nobre, 2016, PV power conversion and short-term forecasting in a tropical, densely-built environment in Singapore, Renew Energy, 94, 496, 10.1016/j.renene.2016.03.075
Yang, 2019, Satellite-augmented diffuse solar radiation separation models, J. Renew. Sustain. Energy, 11, 10.1063/1.5087463
Perez, 1990, Modeling daylight availability and irradiance components from direct and global irradiance, Solar Energy, 44, 271, 10.1016/0038-092X(90)90055-H
Golestaneh, 2016, Generation and evaluation of space–time trajectories of photovoltaic power, Appl Energy, 176, 80, 10.1016/j.apenergy.2016.05.025
vander Meer, 2020, Clear-sky index space-time trajectories from probabilistic solar forecasts: Comparing promising copulas, J. Renew. Sustain. Energy, 12
Toubeau, 2019, Deep learning-based multivariate probabilistic forecasting for short-term scheduling in power markets, IEEE Trans. Power Syst., 34, 1203, 10.1109/TPWRS.2018.2870041
Ammar, 2019, Optimized use of PV distributed generation in voltage regulation: A probabilistic formulation, IEEE Trans. Ind. Inf., 15, 247, 10.1109/TII.2018.2829188
Kabir, 2016, Probabilistic load flow for distribution systems with uncertain PV generation, Appl Energy, 163, 343, 10.1016/j.apenergy.2015.11.003
Zhou, 2018, Optimal sizing of PV and BESS for a smart household considering different price mechanisms, IEEE Access, 6, 41050, 10.1109/ACCESS.2018.2845900
Tavakoli, 2018, CVaR-based energy management scheme for optimal resilience and operational cost in commercial building microgrids, Int J Electr Power Energy Syst, 100, 1, 10.1016/j.ijepes.2018.02.022
Li, 2020, Preface of progress in solar energy special issue: Grid integration, Solar Energy, 210, 1, 10.1016/j.solener.2020.08.093
Li, 2018, Optimal OLTC voltage control scheme to enable high solar penetrations, Electr Power Syst Res, 160, 318, 10.1016/j.epsr.2018.02.016
Camal, 2019, Scenario generation of aggregated Wind, Photovoltaics and small Hydro production for power systems applications, Appl Energy, 242, 1396, 10.1016/j.apenergy.2019.03.112
Li, 2020, A review on the integration of probabilistic solar forecasting in power systems, Solar Energy, 210, 68, 10.1016/j.solener.2020.07.066
Murphy, 1988, Skill scores based on the mean square error and their relationships to the correlation coefficient, Mon. Weather Rev., 116, 2417, 10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2
Murphy, 1992, Climatology, persistence, and their linear combination as standards of reference in skill scores, Weather Forecast., 7, 692, 10.1175/1520-0434(1992)007<0692:CPATLC>2.0.CO;2
Yang, 2019, Standard of reference in operational day-ahead deterministic solar forecasting, J. Renew. Sustain. Energy, 11, 10.1063/1.5114985
Yang, 2019, Making reference solar forecasts with climatology, persistence, and their optimal convex combination, Solar Energy, 193, 981, 10.1016/j.solener.2019.10.006
Yang, 2020, Verification of deterministic solar forecasts, Solar Energy, 210, 20, 10.1016/j.solener.2020.04.019
Yang, 2019, A universal benchmarking method for probabilistic solar irradiance forecasting, Solar Energy, 184, 410, 10.1016/j.solener.2019.04.018
Doubleday, 2020, Benchmark probabilistic solar forecasts: Characteristics and recommendations, Solar Energy, 206, 52, 10.1016/j.solener.2020.05.051
Yang, 2020, Probabilistic solar forecasting benchmarks on a standardized dataset at Folsom, California, Solar Energy, 206, 628, 10.1016/j.solener.2020.05.020
Antonanzas, 2020, Influence of electricity market structures on deterministic solar forecasting verification, Solar Energy, 210, 44, 10.1016/j.solener.2020.04.017
Kehler, 2010, ISO perspective and experience with integrating wind power forecasts into operations, 1
Kaur, 2016, Benefits of solar forecasting for energy imbalance markets, Renew Energy, 86, 819, 10.1016/j.renene.2015.09.011
Yang, 2020, Comment: Operational aspects of solar forecasting, Solar Energy, 210, 38, 10.1016/j.solener.2020.04.014
Luoma, 2014, Forecast value considering energy pricing in California, Appl Energy, 125, 230, 10.1016/j.apenergy.2014.03.061
Notton, 2018, Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting, Renew Sustain Energy Rev, 87, 96, 10.1016/j.rser.2018.02.007
Brancucci Martinez-Anido, 2016, The value of day-ahead solar power forecasting improvement, Solar Energy, 129, 192, 10.1016/j.solener.2016.01.049
Almeida, 2015, PV power forecast using a nonparametric PV model, Solar Energy, 115, 354, 10.1016/j.solener.2015.03.006
Antonanzas, 2017, The value of day-ahead forecasting for photovoltaics in the Spanish electricity market, Solar Energy, 158, 140, 10.1016/j.solener.2017.09.043
Allen, 2002, Towards objective probabalistic climate forecasting, Nature, 419, 228, 10.1038/nature01092a