Post-combustion CO2 capture with sweep gas in thin film composite (TFC) hollow fiber membrane (HFM) contactor
Tài liệu tham khảo
Younas, 2020, Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs), Prog. Energy Combust. Sci., 80, 10.1016/j.pecs.2020.100849
Spigarelli, 2013, Opportunities and challenges in carbon dioxide capture, J. Co2 Util., 1, 69, 10.1016/j.jcou.2013.03.002
Sohaib, 2020, Modeling pre-combustion CO2 capture with tubular membrane contactor using ionic liquids at elevated temperatures, Sep. Purif. Technol., 241, 10.1016/j.seppur.2020.116677
Jiang, 2020, Green synthesis of polymeric membranes: recent advances and future prospects, Curr. Opin. Green Sustain. Chem., 21, 1, 10.1016/j.cogsc.2019.07.002
Merkel, 2010, Power plant post-combustion carbon dioxide capture: an opportunity for membranes, J. Memb. Sci., 359, 126, 10.1016/j.memsci.2009.10.041
Yeom, 2000, Study of transport of pure and mixed CO2/N2 gases through polymeric membranes, J. Appl. Polym. Sci. Symp., 78, 179, 10.1002/1097-4628(20001003)78:1<179::AID-APP220>3.0.CO;2-Z
Vallieres, 2004, Vacuum versus sweeping gas operation for binary mixtures separation by dense membrane processes, J. Memb. Sci., 244, 17, 10.1016/j.memsci.2004.04.023
Yave, 2010, Nanometric thin film membranes manufactured on square meter scale: ultra-thin films for CO2 capture, Nanotechnology, 21, 10.1088/0957-4484/21/39/395301
Rezakazemi, 2018, Thermally stable polymers for advanced high-performance gas separation membranes, Prog. Energy Combust. Sci., 66, 1, 10.1016/j.pecs.2017.11.002
Rezakazemi, 2018, Development of hybrid models for prediction of gas permeation through FS/POSS/PDMS nanocomposite membranes, Int. J. Hydrogen Energy, 43, 17283, 10.1016/j.ijhydene.2018.07.124
Rezakazemi, 2017, H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS, Int. J. Hydrogen Energy, 42, 15211, 10.1016/j.ijhydene.2017.04.044
Rezakazemi, 2016, Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles, J. Nat. Gas Sci. Eng., 30, 10, 10.1016/j.jngse.2016.01.033
Rezakazemi, 2015, Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes, RSC Adv., 5, 82460, 10.1039/C5RA13609A
Rezakazemi, 2018, Organic solvent removal by pervaporation membrane technology: experimental and simulation, Environ. Sci. Pollut. Res. - Int., 25, 19818, 10.1007/s11356-018-2155-3
Rostamizadeh, 2013, Gas permeation through H2-selective mixed matrix membranes: experimental and neural network modeling, Int. J. Hydrogen Energy, 38, 1128, 10.1016/j.ijhydene.2012.10.069
Farno, 2013, Ternary gas permeation through synthesized pdms membranes: experimental and CFD simulation basedon sorption-dependent system using neural network model, Polym. Eng. Sci., 54, 215, 10.1002/pen.23555
Rezakazemi, 2012, Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane, Int. J. Hydrogen Energy, 37, 17275, 10.1016/j.ijhydene.2012.08.109
Rezakazemi, 2012, Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes, Int. J. Hydrogen Energy, 37, 14576, 10.1016/j.ijhydene.2012.06.104
Rezakazemi, 2015, Synthetic PDMS composite membranes for pervaporation dehydration of ethanol, Desalin. Water Treat., 54, 1542
Riasat Harami, 2019, Sorption in mixed matrix membranes: experimental and molecular dynamic simulation and Grand Canonical Monte Carlo method, J. Mol. Liq., 282, 566, 10.1016/j.molliq.2019.03.047
Riasat Harami, 2019, Mass transfer through PDMS/zeolite 4A MMMs for hydrogen separation: molecular dynamics and grand canonical Monte Carlo simulations, Int. Commun. Heat Mass Transf., 108, 10.1016/j.icheatmasstransfer.2019.05.005
Russo, 2018, Selective-exhaust gas recirculation for CO2 capture using membrane technology, J. Memb. Sci., 549, 649, 10.1016/j.memsci.2017.10.052
Liu, 2013, Influence of membrane skin morphology on CO2/N2 separation at sub-ambient temperatures, J. Memb. Sci., 446, 433, 10.1016/j.memsci.2013.06.001
Hao, 2014, Gas/gas membrane contactors–An emerging membrane unit operation, J. Memb. Sci., 462, 131, 10.1016/j.memsci.2014.03.039
Liang, 2017, High-performance composite hollow fiber membrane for flue gas and air separations, J. Memb. Sci., 541, 367, 10.1016/j.memsci.2017.07.014
Zhao, 2019, Improved CO2 separation performance of composite membrane with the aids of low-temperature plasma treatment, J. Memb. Sci., 570, 184, 10.1016/j.memsci.2018.10.051
Ji, 2019, High‐performance CO2 capture through polymer‐based ultrathin membranes, Adv. Funct. Mater., 29, 10.1002/adfm.201900735
Wu, 2020, Plasticization- and aging-resistant membranes with venation-like architecture for efficient carbon capture, J. Memb. Sci., 609, 10.1016/j.memsci.2020.118215
Zhu, 2014, PVDF hollow fiber formation via modified NIPS method: evolution elucidation of phase separation mechanism, structure and properties of membrane with coagulation strength varied, Macromol. Res., 22, 1275, 10.1007/s13233-014-2192-9
Wang, 2013, Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation, Curr. Opin. Chem. Eng., 2, 229, 10.1016/j.coche.2013.04.003
Wu, 2017, Preparation of super-hydrophobic PVDF membrane for MD purpose via hydroxyl induced crystallization-phase inversion, J. Memb. Sci., 543, 288, 10.1016/j.memsci.2017.08.066
Zhu, 2003, Separation of carbon dioxide from gas mixture by membrane contactor, J. Environmental Sciences, 24, 34
Wang, 1993, Baffled membrane modules made with hollow fiber fabric, J. Memb. Sci., 85, 265, 10.1016/0376-7388(93)85280-A
Rajabzadeh, 2009, CO2 absorption by using PVDF hollow fiber membrane contactors with various membrane structures, Sep. Purif. Technol., 69, 210, 10.1016/j.seppur.2009.07.021
Huang, 2014, Pressure ratio and its impact on membrane gas separation processes, J. Memb. Sci., 463, 33, 10.1016/j.memsci.2014.03.016
Berean, 2014, The effect of crosslinking temperature on the permeability of PDMS membranes: evidence of extraordinary CO2 and CH4 gas permeation, Sep. Purif. Technol., 122, 96, 10.1016/j.seppur.2013.11.006
Fu, 2016, A novel cross-linked nano-coating for carbon dioxide capture, Energy Environ. Sci., 9, 434, 10.1039/C5EE02433A
Merkel, 2001, Mixed-gas permeation of syngas components in poly (dimethylsiloxane) and poly (1-trimethylsilyl-1-propyne) at elevated temperatures, J. Memb. Sci., 191, 85, 10.1016/S0376-7388(01)00452-5
Baker, 2002, Future directions of membrane gas separation technology, J Industrial Engineering Chemistry Research, 41, 1393, 10.1021/ie0108088
Zhang, 2013, Investigation of gas permeation behavior in facilitated transport membranes: relationship between gas permeance and partial pressure, Chem. Eng. J., 225, 744, 10.1016/j.cej.2013.03.100
Wessling, 1995, Time‐dependent permeation of carbon dioxide through a polyimide membrane above the plasticization pressure, J. Appl. Polym. Sci. Symp., 58, 1959, 10.1002/app.1995.070581105
Merkel, 2013, Selective exhaust gas recycle with membranes for CO2 capture from natural gas combined cycle power plants, J Industrial Engineering Chemistry Research, 52, 1150, 10.1021/ie302110z
Jordan, 1990, Permeability of pure and mixed gases in silicone rubber at elevated pressures, J. Polym. Sci. Part B: Polym. Phys., 28, 795, 10.1002/polb.1990.090280602
Zhao, 2009, Concepts and investment cost analyses of multi-stage membrane systems used in post-combustion processes, Energy Procedia, 1, 269, 10.1016/j.egypro.2009.01.038
White, 2017, Extended field trials of Polaris sweep modules for carbon capture, J. Memb. Sci., 542, 217, 10.1016/j.memsci.2017.08.017
Yave, 2010, CO2-philic polymer membrane with extremely high separation performance, Macromolecules, 43, 326, 10.1021/ma901950u
Li, 2013, The effects of substrate characteristics and pre-wetting agents on PAN–PDMS composite hollow fiber membranes for CO2/N2 and O2/N2 separation, J. Memb. Sci., 434, 18, 10.1016/j.memsci.2013.01.042
Chen, 2011, Multi-layer composite hollow fiber membranes derived from poly (ethylene glycol)(PEG) containing hybrid materials for CO2/N2 separation, J. Memb. Sci., 381, 211, 10.1016/j.memsci.2011.07.023
Li, 2015, High-performance multilayer composite membranes with mussel-inspired polydopamine as a versatile molecular bridge for CO2 separation, ACS Appl. Mater. Interfaces, 7, 15481, 10.1021/acsami.5b03786
Lindemann, 2014, Preparation of freestanding conjugated microporous polymer nanomembranes for gas separation, J Chemistry of Materials, 26, 7189, 10.1021/cm503924h
Liang, 2018, High-performance multiple-layer PIM composite hollow fiber membranes for gas separation, J. Memb. Sci., 563, 93, 10.1016/j.memsci.2018.05.045
Wang, 2002, Preparation and characterization of high-flux polysulfone hollow fibre gas separation membranes, J. Memb. Sci., 204, 247, 10.1016/S0376-7388(02)00047-9
Chen, 2014, High performance composite hollow fiber membranes for CO2/H2 and CO2/N2 separation, Int. J. Hydrogen Energy, 39, 5043, 10.1016/j.ijhydene.2014.01.047
Kim, 2016, CO2 separation using surface-functionalized SiO2 nanoparticles incorporated ultra-thin film composite mixed matrix membranes for post-combustion carbon capture, J. Memb. Sci., 515, 54, 10.1016/j.memsci.2016.05.029
Meng, 2018, Comprehensive study of CO2 capture performance under a wide temperature range using polyethyleneimine-modified adsorbents, J. Co2 Util., 27, 89, 10.1016/j.jcou.2018.07.007
Wu, 2019, A novel Pebax-C60(OH)24/PAN thin film composite membrane for carbon dioxide capture, Sep. Purif. Technol., 215, 480, 10.1016/j.seppur.2018.12.073