Post-Newtonian perturbed theory of elastic astronomical bodies in rotating spherical coordinates

Springer Science and Business Media LLC - Tập 46 - Trang 307-320 - 2003
Xuejun Wu1, Chongming Xu1, Soffel Michael2
1Department of Physics, Nanjing Normal University, Nanjing, China
2Lohrmann Observatory, Technical University Dresden, Dresden, Germany

Tóm tắt

In this paper the dynamical equations for an elastic deformable body in the first post-Newtonian approximation of Einstein theory of gravity are derived in rotating spherical coordinates. The unperturbed rotating body (the relaxed ground state) is described as uniformly rotating, stationary and axisymmetric configuration in an asymptotically flat space-time manifold. Deviations from the equilibrium configuration are described by means of a displacement field. By making use of the schemes developed by Damour, Soffel and Xu, and by Carter and Quintana we calculate the post-Newtonian Lagrangian strain tensor and symmetric trace-free shear tensor. Considering the Euler variations of Einstein’s energy-momentum conservation law, we derive the post-Newtonian energy equation and Euler equations of elastic deformable bodies in rotating spherical coordinates.

Tài liệu tham khảo

Damour, T., Soffel, M., Xu, C., General-relativistic celestial mechanics I. Method and definition of reference systems, Phys. Rev. D, 1991, 43: 3273–3307. Damour, T., Soffel, M., Xu, C., General-relativistic celestial mechanics II. Translational equations of motion. Phys. Rev. D, 1992, 45: 1017–1044. Damour, T., Soffel, M., Xu, C., General-relativistic celestial mechanics III. Rotational equation of motion, Phys. Rev. D, 1993, 47: 3124–3135. Damour, T., Soffel, M., Xu, C., General-relativistic celestial mechanics IV. Theory of satellite motion, Phys. Rev. D, 1994, 49: 618–635. Jeffreys, H., Vicente, R. O., The theory of nutation and the variation of latitude, Mon. Not. R. Astron. Soc, 1957, 117: 142–173. Smith, M. L., The scalar equations of infinitesimal elastic-gravitational motion for a rotating, slight elliptical Earth, Geophys. J. R. Astron. Soc, 1974, 37: 491–526. Wahr, J. M., Computing tides, nutations and tidally-induced variations in the Earth’s rotation rate for a rotating, elliptical Earth, Geodesy and Geodynamics (eds. Moritz, H., Sükel, H.), Berlin: Springer-Verlag, 1982: 327–379. Schastok, J., A new nutation series for a more realistic model Earth, Geophy. J. Int, 1997, 130: 137–150. Dehant, V., Defraigne, P., New transfer functions for nutation of a non-rigid Earth, J. Geophys. Res., 1997, 102: 27659–27688. Hughes, S. A., Thorne, K. S., Seismic gravity-gradient noise in interferometric gravitational-wave detector, Phys. Rev. D 1998, 58: 122002(1–27). Cardoso, V., Lemos, J. P. S., Quasi normal modes of toroidal, cylindrical and in anti-deSitter spaces scalar, electromagnetic and gravitational perturbation, Class. Quant. Grav., 2001, 18: 5257–5267. Wu, X., Xu, C., Numerical solutions of general-relativistic field equations for rapidly rotating neutron stars, Science in China, Ser. A., 1997, 40(1): 45–56. Xu, C., Wu, X., Schäfer, G., Binary systems with monopole, spin and quadrupole moments, Phys. Rev. D, 1997, 55: 528–539. Xu, C., Wu, X., Soffel, M., General-relativistic theory of elastic deformable astronomical bodies, Phys. Rev. D, 2001, 63: 043002(1–11). Lapwood, E. R., Usami, T., Free Oscillation of the Earth, London: Cambridge Univ. Press, 1981, Chapt. 7, 107–127. Phinney, R. A., Burridge, R., Representation of the elastic-gravitational excitation of a spherical Earth model by generalized spherical harmonics, Geophys. J. R. Astro. Soc., 1973, 34: 451–487. Thorne, K. S., Multipole expansions of gravitational radiation, Rev. Mod. Phys., 1980, 52: 299–339. Carter, B., Quintana, H., Foundations of general relativistic high-pressure elasticity theory, Proc. Roy. Soc. Lond., 1972, A331: 57–83. Carter, B., Elastic perturbation theory in general relativity and a variation principle for a rotating solid star. Commun. Math. Phys., 1973, 30: 261–286.