Possibilities of identifying members from Milky Way satellite galaxies using unsupervised machine learning algorithms

Journal of Astrophysics and Astronomy - Tập 45 - Trang 1-20 - 2024
Devika K. Divakar1,2, Pallavi Saraf1,3, Thirupathi Sivarani1, Vijayakumar H. Doddamani2
1Indian Institute of Astrophysics, II Block, Koramangala, Bangalore, India
2Department of Physics, Bangalore University, Bangalore, India
3Pondicherry University, Kalapet, India

Tóm tắt

A detailed study of stellar populations in Milky Way (MW) satellite galaxies remains an observational challenge due to their faintness and fewer spectroscopically confirmed member stars. We use unsupervised machine learning methods to identify new members for nine nearby MW satellite galaxies using Gaia data release-3 (Gaia DR3) astrometry, the Dark Energy Survey (DES) and the DECam Local Volume Exploration Survey (DELVE) photometry. Two density-based clustering algorithms, DBSCAN and HDBSCAN, have been used in the four-dimensional astrometric parameter space ( $$\alpha _{2016}$$ , $$\delta _{2016}$$ , $$\mu _{\alpha } \cos \delta $$ , $$\mu _\delta $$ ) to identify member stars belonging to MW satellite galaxies. Our results indicate that we can recover more than 80% of the known spectroscopically confirmed members in most satellite galaxies and also reject 95–100% of spectroscopic non-members. We have also added many new members using this method. We compare our results with previous studies using photometric and astrometric data and discuss the suitability of density-based clustering methods for MW satellite galaxies.

Tài liệu tham khảo

Abbott T. M. C., Adamów M., Aguena M. et al. 2021, ApJS, 255, 20 Abdallah H., Adam R., Aharonian F. et al. 2020, Phys. Rev. D, 102, 062001 Acciari V. A., Ansoldi S., Antonelli L. A. et al. 2022, Phys. Dark Universe, 35, 100912 Astropy Collaboration, Robitaille T. P., Tollerud E. J. et al. 2013, A &A, 558, A33 Ball N. M., Brunner R. J. 2010, Int. J. Mod. Phys. D, 19, 1049 Baron D. 2019, arXiv e-prints, arXiv:1904.07248 Baron D., Poznanski D. 2017, MNRAS, 465, 4530 Battaglia G., Taibi S., Thomas G. F., Fritz T. K. 2022, A &A, 657, A54 Bechtol K., Drlica-Wagner A., Balbinot E. et al. 2015, ApJ, 807, 50 Brown T. M., Tumlinson J., Geha M. et al. 2014, ApJ, 796, 91 Bruce J., Li T. S., Pace A. B. et al. 2023, arXiv e-prints, arXiv:2302.03708 Bullock J. S., Johnston K. V. 2005, ApJ, 635, 931 Campello R. J. G. B., Moulavi D., Sander J. 2013, in eds Pei J., Tseng V. S., Cao L., Motoda H., Xu G., Advances in Knowledge Discovery and Data Mining (Berlin, Heidelberg: Springer) p. 160 Carlin J. L., Grillmair C. J., Muñoz R. R., Nidever D. L., Majewski S. R. 2009, Astrophys. J., 702, L9 Carlin J. L., Sand D. J. 2018, ApJ, 865, 7 Casagrande L., VandenBerg D. A. 2014, MNRAS, 444, 392 Castro-Ginard A., Jordi C., Luri X. et al. 2022, A &A, 661, A118 Cerny W., Pace A. B., Drlica-Wagner A. et al. 2021, ApJ, 910, 18 Cerny W., Simon J. D., Li T. S. et al. 2023, ApJ, 942, 111 Chambers K. C., Magnier E. A., Metcalfe N. et al. 2016, arXiv e-prints, arXiv:1612.05560 Dall’Ora M., Clementini G., Kinemuchi K. et al. 2006, ApJL, 653, L109 Diehl H. T., Abbott T. M. C., Annis J. et al. 2014, in eds Peck A. B., Benn C. R., Seaman R. L., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9149, Observatory Operations: Strategies, Processes and Systems V, 91490V Drlica-Wagner A., Bechtol K., Rykoff E. S. et al. 2015, ApJ, 813, 109 Drlica-Wagner A., Bechtol K., Allam S. et al. 2016, ApJL, 833, L5 Drlica-Wagner A., Ferguson P. S., Adamów M. et al. 2022, ApJS, 261, 38 Elvin-Poole J., Crocce M., Ross A. J. et al. 2018, Phys. Rev. D, 98, 042006 Ester M., Kriegel H.-P., Sander J., Xu X. 1996, AAAI, 226 Fabricius C., Luri X., Arenou F. et al. 2021, A &A, 649, A5 Fellhauer M., Wilkinson M. I., Evans N. W. et al. 2008, MNRAS, 385, 1095 Flaugher B., Diehl H. T., Honscheid K. et al. 2015, AJ, 150, 150 Frebel A., Bromm V. 2012, ApJ, 759, 115 Frebel A., Simon J. D., Kirby E. N. 2014, ApJ, 786, 74 Fritz T. K., Battaglia G., Pawlowski M. S. et al. 2018, A &A, 619, A103 Gaia Collaboration, Helmi A., van Leeuwen F. et al. 2018a, A &A, 616, A12 Gaia Collaboration, Brown A. G. A., Vallenari A. et al. 2018b, A &A, 616, A1 Gaia Collaboration, Vallenari, A., Brown, A. G. A. et al. 2022, arXiv:2208.00211 Green G. 2018, J. Open Source Softw., 3, 695 Grillmair C. J. 2009, ApJ, 693, 1118 Hargis J. R., Willman B., Peter A. H. G. 2014, ApJL, 795, L13 Homma D., Chiba M., Okamoto S. et al. 2016, ApJ, 832, 21 Homma D., Chiba M., Okamoto S. et al. 2018, PASJ, 70, S18 Jenkins S. A., Li T. S., Pace A. B. et al. 2021, ApJ, 920, 92 Ji A. P., Frebel A., Chiti A., Simon J. D. 2016, Nature, 531, 610 Ji A. P., Li T. S., Simon J. D. et al. 2020, ApJ, 889, 27 Kallivayalil N., Sales L. V., Zivick P. et al. 2018, ApJ, 867, 19 Kauffmann G., White S. D. M., Guiderdoni B. 1993, MNRAS, 264, 201 Kim D., Jerjen H. 2015, ApJL, 808, L39 Kim D., Jerjen H., Mackey D., Da Costa G. S., Milone A. P. 2015, ApJL, 804, L44 Kim S. Y., Peter A. H. G., Hargis J. R. 2018, PRL, 121, 211302 Kirby E. N., Cohen J. G., Guhathakurta P. et al. 2013, ApJ, 779, 102 Klypin A., Kravtsov A. V., Valenzuela O., Prada F. 1999, ApJ, 522, 82 Koch A., Wilkinson M. I., Kleyna J. T. et al. 2009, ApJ, 690, 453 Koposov S., Belokurov V., Evans N. W. et al. 2008, ApJ, 686, 279 Koposov S. E., Belokurov V., Torrealba G., Evans N. W. 2015a, ApJ, 805, 130 Koposov S. E., Casey A. R., Belokurov V. et al. 2015b, ApJ, 811, 62 Koposov S. E., Walker M. G., Belokurov V. et al. 2018, MNRAS, 479, 5343 Kravtsov A. V., Klypin A. A., Bullock J. S., Primack J. R. 1998, ApJ, 502, 48 Laevens B. P. M., Martin N. F., Ibata R. A. et al. 2015, ApJL, 802, L18 Laevens B. P. M., Martin N. F., Bernard E. J. et al. 2015, ApJ, 813, 44 Li H., Hammer F., Babusiaux C. et al. 2021, ApJ, 916, 8 Li T. S., Simon J. D., Pace A. B. et al. 2018a, ApJ, 857, 145 Li T. S., Simon J. D., Kuehn K. et al. 2018b, ApJ, 866, 22 Lindegren L., Klioner S. A., Hernández J. et al. 2021, A &A, 649, A2 Longeard N., Jablonka P., Arentsen A. et al. 2022, MNRAS, 516, 2348 MacQueen J. B. 1967, in eds Cam L. M. L., Neyman J. 1, Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, University of California Press, p. 281 Manwadkar V., Kravtsov A. V. 2022, MNRAS, 516, 3944 Martin N. F., Ibata R. A., Chapman S. C., Irwin M., Lewis G. F. 2007, MNRAS, 380, 281 Martínez-García A. M., del Pino A., Aparicio A., van der Marel R. P., Watkins L. L. 2021, MNRAS, 505, 5884 Massari D., Helmi A. 2018, A &A, 620, A155 Mau S., Cerny W., Pace A. B. et al. 2020, ApJ, 890, 136 McConnachie A. W., Venn K. A. 2020a, ApJ, 160, 124 McConnachie A. W., Venn K. A. 2020b, Res. Notes Am. Astron. Soc., 4, 229 McInnes L., Healy J. 2017, IEEE, https://doi.org/10.1109/icdmw.2017.12 McLachlan G. J., Peel D. 2000, Finite mixture models (New York: Wiley Series in Probability and Statistics) Moore B., Ghigna S., Governato F. et al. 1999, ApJ, 524, L19 Muñoz R. R., Carlin J. L., Frinchaboy P. M. et al. 2006, ApJ, 650, L51 Muñoz R. R., Côté P., Santana F. A. et al. 2018, ApJ, 860, 66 Nadler E. O., Wechsler R. H., Bechtol K. et al. 2020, ApJ, 893, 48 Newton O., Cautun M., Jenkins A., Frenk C. S., Helly J. C. 2018, MNRAS, 479, 2853 Nidever D. L., Dey A., Fasbender K. et al. 2021, AJ, 161, 192 Odewahn S. C., Stockwell E. B., Pennington R. L., Humphreys R. M., Zumach W. A. 1992, AJ, 103, 318 Pace A. B., Erkal D., Li T. S. 2022, ApJ, 940, 136 Pace A. B., Li T. S. 2019, ApJ, 875, 77 Pasquato M., Milone A. 2019, arXiv e-prints, arXiv:1906.04983 Pietrinferni A., Hidalgo S., Cassisi S. et al. 2021, ApJ, 908, 102 Reis I., Rotman M., Poznanski D., Prochaska J., Wolf L. 2021, Astron. Comput., 34, 100437 Rey M. P., Pontzen A., Agertz O. et al. 2019, ApJL, 886, L3 Roderick T. A., Mackey A. D., Jerjen H., DaCosta G. S. 2016, MNRAS, 461, 3702 Rubin A., Gal-Yam A. 2016, ApJ, 828, 111 Sales L. V., Navarro J. F., Kallivayalil N., Frenk C. S. 2017, MNRAS, 465, 1879 Schlegel D. J., Finkbeiner D. P., Davis M. 1998, ApJ, 500, 525 Simon J. D. 2018, ApJ, 863, 89 Simon J. D., Drlica-Wagner A., Li T. S. et al. 2015, ApJ, 808, 95 Simon J. D., Li T. S., Drlica-Wagner A. et al. 2017, ApJ, 838, 11 Simon J. D., Li T. S., Erkal D. et al. 2020, ApJ, 892, 137 Taylor M. 2011, TOPCAT: Tool for Operations on Catalogues and Tables Astrophysics Source Code Library, record ascl:1101.010, ascl:1101.010 Tollerud E. J., Bullock J. S., Strigari L. E., Willman B. 2008, ApJ, 688, 277 Torrealba G., Belokurov V., Koposov S. E. et al. 2018, MNRAS, 475, 5085 Vasconcellos E. C., de Carvalho R. R., Gal R. R. et al. 2011, AJ, 141, 189 Vitral E. 2021, MNRAS, 504, 1355 Waller F., Venn K., Sestito F. et al. 2022, arXiv e-prints, arXiv:2208.07948 Walsh S. M., Willman B., Sand D., et al. 2008, ApJ, 688, 245. Weir N., Fayyad U. M., Djorgovski S. 1995, AJ, 109, 2401 Weisz D. R., Dolphin A. E., Skillman E. D. et al. 2015, ApJ, 804, 136 York D. G., Adelman J., Anderson John E. J. et al. 2000, AJ, 120, 1579