Các nghiệm dương cho bài toán giá trị biên của phương trình vi phân phân thức bậc cao trong không gian Banach

Springer Science and Business Media LLC - Tập 2013 - Trang 1-15 - 2013
Yulin Zhao1, Lianjiao Yang1, Pingge Chen1
1School of Science, Hunan University of Technology, Zhuzhou, China

Tóm tắt

Trong bài báo này, bằng cách sử dụng định lý điểm cố định trong ngọn của các phép toán co thuần hóa nghiêm ngặt, chúng tôi nghiên cứu một lớp bài toán giá trị biên bậc cao của phương trình vi phân phân thức phi tuyến trong không gian Banach. Các điều kiện đủ để tồn tại ít nhất hai nghiệm dương được thiết lập. Ngoài ra, một ví dụ để minh họa các kết quả chính được cung cấp.

Từ khóa

#phương trình vi phân phân thức #bài toán giá trị biên #nghiệm dương #không gian Banach

Tài liệu tham khảo

Podlubny I: Fractional Differential Equations. Academic Press, San Diego; 1999. Kilbas AA, Srivastava HM, Trujillo JJ North-Holland Mathematics Studies 204. In Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam; 2006. Sabatier J, Agrawal OP, Machado JAT (Eds): Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht; 2007. Baleanu D, Diethelm K, Scalas E, Trujillo JJ Series on Complexity, Nonlinearity and Chaos. In Fractional Calculus Models and Numerical Methods. World Scientific, Boston; 2012. Lakshmikantham V: Theory of fractional functional differential equations. Nonlinear Anal. 2008, 69: 337-3343. 10.1016/j.na.2007.05.022 Zhang S: Positive solutions to singular boundary value problem for nonlinear fractional differential equation. Comput. Math. Appl. 2010, 59: 1300-1309. 10.1016/j.camwa.2009.06.034 Bai Z: On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal. 2010, 72: 916-924. 10.1016/j.na.2009.07.033 Jankowski T: Initial value problems for neutral fractional differential equations involving a Riemann-Liouville derivative. Appl. Math. Comput. 2013, 219: 7772-7776. 10.1016/j.amc.2013.02.001 Goodrich CS: Existence of a positive solution to a class of fractional differential equations. Appl. Math. Lett. 2010, 23: 1050-1055. 10.1016/j.aml.2010.04.035 Zhao Y, Chen H, Huang L: Existence of positive solutions for nonlinear fractional functional differential equation. Comput. Math. Appl. 2012, 64: 3456-3467. 10.1016/j.camwa.2012.01.081 Zhang X, Liu L, Wu Y: Multiple positive solutions of a singular fractional differential equation with negatively perturbed term. Math. Comput. Model. 2012, 55: 1263-1274. 10.1016/j.mcm.2011.10.006 Wang G: Monotone iterative technique for boundary value problems of a nonlinear fractional differential equations with deviating arguments. J. Comput. Appl. Math. 2012, 236: 2425-2430. 10.1016/j.cam.2011.12.001 Wang G, Baleanu D, Zhang L: Monotone iterative method for a class of nonlinear fractional differential equations. Fract. Calc. Appl. Anal. 2012, 15: 244-252. Zhao Y, Ye G, Chen H: Multiple positive solutions of a singular semipositone integral boundary value problem for fractional q -derivatives equation. Abstr. Appl. Anal. 2013., 2013: Article ID 643571 El-Shahed M, Nieto JJ: Nontrivial solutions for a nonlinear multi-point boundary value problem of fractional order. Comput. Math. Appl. 2010, 59: 3438-3443. 10.1016/j.camwa.2010.03.031 Zhao Y, Chen H, Zhang Q: Existence results for fractional q -difference equations with nonlocal q -integral boundary conditions. Adv. Differ. Equ. 2013., 2013: Article ID 48 Ahmad B: Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations. Appl. Math. Lett. 2010, 23: 390-394. 10.1016/j.aml.2009.11.004 Wang J, Zhou Y, Fečkan M: Abstract Cauchy problem for fractional differential equations. Nonlinear Dyn. 2013, 71: 685-700. 10.1007/s11071-012-0452-9 Salem AH: On the fractional order m -point boundary value problem in reflexive Banach spaces and weak topologies. J. Comput. Appl. Math. 2009, 224: 565-572. 10.1016/j.cam.2008.05.033 Balachandran K, Trujillo JJ: The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces. Nonlinear Anal. 2010, 72: 4587-4593. 10.1016/j.na.2010.02.035 Balachandran K, Kiruthika S, Trujillo JJ: Existence results for fractional impulsive integrodifferential equations in Banach spaces. Commun. Nonlinear Sci. Numer. Simul. 2011, 16: 1970-1977. 10.1016/j.cnsns.2010.08.005 Lv Z, Liang J, Xiao T: Solutions to the Cauchy problem for differential equations in Banach spaces with fractional order. Comput. Math. Appl. 2011, 62: 1303-1311. 10.1016/j.camwa.2011.04.027 Su X: Solutions to boundary value problem of fractional order on unbounded domains in a Banach space. Nonlinear Anal. 2011, 74: 2844-2852. 10.1016/j.na.2011.01.006 Zhang L, Ahmad B, Wang G, Agarwal RP: Nonlinear fractional integro-differential equations on unbounded domains in a Banach space. J. Comput. Appl. Math. 2013, 249: 51-56. Guo D, Lakshmikantham V: Nonlinear Problems in Abstract Cones. Academic Press, New York; 1988.