Positive pseudo almost periodic solutions to a class of hematopoiesis model: oscillations and dynamics
Tóm tắt
This paper presents a new generalized Mackey-Glass model with a non-linear harvesting term and mixed delays. The main purpose of this work is to study the existence and the exponential stability of the pseudo almost periodic solution for the considered model. By using fixed point theorem and under suitable Lyapunov function, sufficient conditions are given to study the pseudo almost periodic solution for the considered model. Moreover, an illustrative example is given to demonstrate the effectiveness of the obtained results.
Tài liệu tham khảo
Amdouni, M., Chérif, F.: The pseudo almost periodic solutions of the new class of Lotka–Volterra recurrent neural networks with mixed delays. Chaos Solitons Fractals 113, 79–88 (2018)
Alzabut, J.O., Nieto, J.J., Stamov, GTr: Existence and exponential stability of positive almost periodic solutions for a model of hematopoiesis. Bound. Value Probl. 1193, 429–436 (2009)
Blot, J.B., Blot, J., N’Guérékata, G.M., Pennequin, D.: On C(n)—almost periodic solutions to some nonautonomous differential equations in banach spaces. Annales Societatis Mathematycae Polonae, Series I: Commentationes Mathematica eroczniki polskiego towarzystwa mathematycznego, Seria I: Prace Mathematyczne XLVI(2), 263–273 (2006)
Braverman, E., Saker, S.H.: Permanence, oscillation and attractivity of the discrete hematopoiesis model with variable coefficients. Nonlinear Anal. Theory Methods Appl. 67, 2955–2965 (2007)
Chen, X., Hui-Sheng, D.: Positive pseudo almost periodic solutions for a hemathopoies model. J. Nonlinear Evol. Equ. Appl. 2016(2), 25–36 (2016)
Chérif, F.: Analysis of global asymptotic stability and pseudo almost periodic solution of a class of chaotic neural networks. Math. Model. Anal. 18(4), 489–504 (2013)
Chérif, F.: Pseudo almost periodic solution of Nicholson’s blowflies model with mixed delays. Appl. Math. Model. 39, 5152–5163 (2015)
Cieutat, P., Fatajou, S., N’Guérékata, G.M.: Composition of pseudo almost periodic and pseudo almost automorphic functions and applications to evolution equations. Annales mathématiques Blaise Pascal tome 6, 1–11 (1999)
Diagana, T.: Pseudo almost periodic functions in banach spaces. Nova Science, New York (2007)
Diagana, T., Zhou, H.: Existence of positive almost periodic solutions to the hematopoiesis model. Appl. Math. Comput. 274, 644–648 (2016)
Ding, H.S., Liu, Q.L., Nieto, J.J.: Existence of positive almost periodic solutions to a class of hematopoiesis model. Appl. Math. Model. 40, 3289–3297 (2016)
Ding, H.S., N’Guérékata, H.M., Nieto, J.J.: Weighted pseudo almost periodic solutions for a class of discrete hematopoiesis model. Rev. Mat. Complut. 26, 427–443 (2013)
Hale, J.K., Verduyn Lunel, S.M.: Introduction to functional differential equations. Springer, New York (1993)
Liu, B., Tunç, C.: Pseudo almost periodic solutions for a class of nonlinear Duffing system with a deviating argument. J. Appl. Math. Comput. 49, 233–242 (2015)
Liu, B., Tunç, C.: Pseudo almost periodic solutions for a class of first order differential iterative equations. Appl. Math. Lett. 40, 29–34 (2015)
Liu, B., Tunc, C.: Pseudo almost periodic solutions for CNNs with leakage delays and complex deviating arguments. Neural Comput. Appl. 26, 429–435 (2015)
Liu, B.: New results on the positive almost periodic solutions for a model of hematopoiesis. Nonlinear Anal. Real World Appl. 17, 252–264 (2014)
Liu, G., Yan, J., Zhang, F.: Existence and global attractivity of unique positive periodic solution for a model of hematopoiesis. J. Math. Anal. Appl. 334, 157–171 (2007)
Long, F., Yang, M.Q.: Positive periodic solutions of delayed Nicholsons blowies model with a linear harvesting term. Electron. J Qual. Thory Differ. Equ. 41, 1–11 (2011)
Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control system. Science 197, 287–289 (1977)
Meng, J.: Global exponential stability of positive pseudo-almost-periodic solutions for a model of hematopoiesis. Abstr. Appl. Anal. (2013), Art. ID 463076
Rihani, S., Amor, K., Chérif, F.: Pseudo almost periodic solutions for a Lasota–Wazewska model. Electron. J. Differ. Equ. 2016(62), 1–17 (2016)
Saker, S.H.: Oscillation and global attractivity in hematopoiesis model with periodic coefficients. Appl. Math. Comput. 142, 477–494 (2003)
Wang, X., Zhang, H.: A new approach to the existence, nonexistence and uniqueness of positive almost periodic solution for a model of hematopoiesis. Nonlinear Anal. Real World Appl. 11(1), 60–66 (2010)
Wu, X., Li, J., Zhou, H.: A necessary and sufficient condition for the existence of positive periodic solutions of a model of hematopoiesis. Comput. Math. Appl. 54(6), 840–849 (2007)
Zhang, C.: Almost periodic type functions and ergodicity. Kluwer Academic/Science Press, Beijing (2003)
Zhang, C.: Pseudo almost periodic solutions of some diffe rential equations II. J. Math. Anal. Appl. 192, 543–561 (1995)
Zhou, H., Wang, W., Zhou, Z.F.: Positive almost periodic solution for a model of hematopoiesis with infinite time delays and a nonlinear harvesting term. Abstr. Appl. Anal. 2013, 146729 (2013)
Zhou, H., Wang, J., Zhou, Z.: Positive almost periodic solution for impulsive Nicholson’s blowfles model with multiple linear harvesting terms. Math. Methods Appl. Sci. 36(4), 456–461 (2013)