Phân Tích Yếu Tố Ma Trận Dương: Mô hình yếu tố không âm với tối ưu hóa sử dụng ước lượng lỗi của giá trị dữ liệu

Environmetrics - Tập 5 Số 2 - Trang 111-126 - 1994
Pentti Paatero1, Unto Tapper1
1University of Helsinki, Department of Physics, Siltavuorenpenger 20 D, SF-00170 Helsinki, Finland

Tóm tắt

Tóm tắt

Một biến thể mới tên là ‘PMF’ trong phân tích yếu tố được mô tả. Giả định rằng X là một ma trận của dữ liệu quan sát và σ là ma trận đã biết của độ lệch chuẩn của các phần tử trong X. Cả X và σ có kích thước n × m. Phương pháp giải quyết vấn đề ma trận song tuyến tính X = GF + E ở đây G là ma trận yếu tố bên trái chưa biết (điểm số) có kích thước n × p, F là ma trận yếu tố bên phải chưa biết (tải trọng) có kích thước p × m, và E là ma trận dư. Vấn đề được giải bằng phương pháp bình phương tối thiểu có trọng số: GF được xác định sao cho chuẩn Frobenius của E chia từng phần tử theo σ được tối thiểu hóa. Hơn nữa, giải pháp được ràng buộc để tất cả các phần tử của GF phải không âm. Kết quả cho thấy rằng các giải pháp qua PMF thường khác biệt với các giải pháp từ phân tích yếu tố thông thường (FA, tức là phân tích thành phần chính (PCA) tiếp theo là xoay vòng). Thông thường PMF cung cấp sự phù hợp tốt hơn đối với dữ liệu hơn FA. Ngoài ra, kết quả của PF được đảm bảo không âm, trong khi kết quả của FA thường không thể xoay vòng để loại bỏ mọi phần tử âm. Các ứng dụng tiềm năng khác nhau của phương pháp mới này được thảo luận ngắn gọn. Trong dữ liệu môi trường, các ước lượng lỗi của dữ liệu có thể thay đổi lớn và tính không âm thường là một tính năng cần thiết của các mô hình cơ bản. Do đó, kết luận rằng PMF phù hợp hơn FA hoặc PCA trong nhiều ứng dụng môi trường. Các ví dụ về ứng dụng thành công của PMF được trình bày trong các bài báo đồng hành.

Từ khóa

#Phân Tích Ma Trận Dương #Ứng dụng Môi Trường #Không Âm #Ước Lượng Lỗi #Phân Tích Thành Phần Chính #Bình Phương Tối Thiểu Có Trọng Số #Phù Hợp Dữ Liệu

Tài liệu tham khảo

10.1016/S0021-8502(05)80089-8

10.1016/0169-7439(93)80055-M

Tapper U., 1994, Robust modelling of data errors in non‐negative factor analysis of bulk wet deposition

10.1016/S0922-3487(08)70128-X

10.1016/0004-6981(89)90190-X

10.1007/978-3-642-93295-3_112

10.1016/0003-2670(91)85070-9

Karjalainen E.Private communication 1993.

10.1002/env.3170050204

10.1016/0004-6981(84)90376-7

Antilla P. Paatero P. Tapper U.andJärvinen O.‘Source identification of bulk wet deposition in Finland by positive matrix factorization’ Atmospheric Environment(1994).

Paatero P., 1992, Use of three‐matrix positive matrix factorization for analyzing environmental data’, Conference ‘Environmetrics