Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment

Nature Geoscience - Tập 4 Số 2 - Trang 116-121 - 2011
Richard M. Iverson1, Mark E. Reid2, Matthew Logan1, Richard G. LaHusen1, Jonathan W. Godt3, Julia P. Griswold1
1US Geological Survey, Washington 98683, USA
2US Geological Survey, California 94025, USA
3US Geological Survey, Colorado 80225, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Takahashi, T. Debris Flow—Mechanics, Prediction and Countermeasures (Taylor & Francis, 2007).

Iverson, R. M. The physics of debris flows. Rev. Geophys. 35, 245–296 (1997).

Pierce, J. L., Meyer, G. A. & Jull, A. J. T. Fire-induced erosion and millennial-scale climate change in northern ponderosa pine forests. Nature 432, 87–90 (2004).

Stoffel, M. & Beniston, M. On the incidence of debris flows from the early Little Ice Age to a future greenhouse climate: A case study from the Swiss Alps. Geophys. Res. Lett. 33, L16404 (2006).

Jakob, M. & Friele, P. Frequency and magnitude of debris flows on Cheekye River, British Columbia. Geomorphology 114, 382–395 (2009).

Hungr, O., McDougall, S. & Bovis, M. in Debris-Flow Hazards and Related Phenomena (eds Jakob, M. & Hungr, O.) 135–158 (Springer, 2005).

Benda, L. The influence of debris flows on channels and valley floors in the Oregon Coast Range, USA. Earth Surf. Proc. Landf. 15, 457–466 (1990).

Pierson, T. C., Janda, R. J., Thouret, J-C. & Borrero, C. A. Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobilization, flow and deposition of lahars. J. Volcanol. Geotherm. Res. 41, 17–66 (1990).

Berti, M., Genevois, R., Simoni, A. & Rosella Tecca, P. Field observations of a debris flow event in the Dolomites. Geomorphology 29, 265–274 (1999).

Fannin, R. J. & Wise, M. P. An empirical–statistical model for debris flow travel distance. Can. Geotech. J. 38, 982–994 (2001).

Rickenmann, D., Weber, D. & Stepanov, B. in Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment, (eds Rickenmann, D. &Chen, C-L.) 883–894 (Millpress, 2003).

Wang, G., Sassa, K. & Fukuoka, H. Downslope volume enlargement of a debris slide–debris flow in the 1999 Hiroshima, Japan, rainstorm. Eng. Geol. 69, 309–330 (2003).

Godt, J. W. & Coe, J. A. Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range, Colorado. Geomorphology 84, 80–97 (2007).

Breien, H., De Blasio, F. V., Elverhøi, A & Høeg, K. Erosion and morphology of a debris flow caused by a glacial lake outburst flood, western Norway. Landslides 5, 271–280 (2008).

Berger, C., McArdell, B. W., Fritschi, B. & Schlunegger, F. A novel method for measuring the timing of bed erosion during debris flows and floods. Water Res. 46, W02502 (2010).

Guthrie, R. H. et al. An examination of controls on debris flow mobility: Evidence from coastal British Columbia. Geomorphology 114, 601–613 (2010).

Hungr, O., Morgan, G. C. & Kellerhalls, R. Quantitative analysis of debris torrent hazards for design of remedial measures. Can. Geotech. J. 21, 663–677 (1984).

Pouliquen, O. & Foreterre, Y. Friction law for dense granular flows: Application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133–151 (2002).

Chen, H., Crosta, G. B. & Lee, C. F. Erosional effects on runout of fast landslides, debris flows and avalanches: A numerical investigation. Geotechnique 56, 305–322 (2006).

Sovilla, B., Burlando, P. & Bartelt, P. Field experiments and numerical modelling of mass entrainment in snow avalanches. J. Geophys. Res. 111, F03007 (2006).

Mangeney, A., Tsimring, L. S., Volfson, D., Aranson, I. S. & Bouchut, F. Avalanche mobility induced by the presence of an erodible bed and associated entrainment. Geophys. Res. Lett. 34, L22401 (2007).

Armanini, A., Fraccarollo, L. & Rosatti, G. Two-dimensional simulation of debris flows in erodible channels. Comput. Geosci. 35, 993–1006 (2009).

Crosta, G. B., Imposimato, S. & Roddeman, D. Numerical modelling of 2-D granular step collapse on erodible and nonerodible surface. J. Geophys. Res. 114, F03020 (2009).

Mangeney, A. et al. Erosion and mobility in granular collapse over sloping beds. J. Geophys. Res. 115, F03040 (2010).

Bowman, E. T., Imre, B., Laue, J. & Springman, S. M. in Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment, (eds Chen, C-L. & Major, J. J.) 229–239 (Millpress, 2007).

Iverson, R. M., Logan, M., LaHusen, R. G. & Berti, M. The perfect debris flow? Aggregated results from 28 large-scale experiments. J. Geophys. Res. 115, F03005 (2010).

Hutchinson, J. N. & Bhandari, R. K. Undrained loading, a fundamental mechanism of mudflows and other mass movements. Geotechnique 21, 353–358 (1971).

Sassa, K., Kaibori, M. & Kitera, N. in Proc. Int. Symp. on Erosion, Debris Flows and Disaster Prevention (ed. Takei, A.) 231–236 (The Erosion-control Engineering Society, 1985).

Takahashi, T. Mechanical characteristics of debris flow. J. Hydraul. Division, ASCE 104, 1153–1169 (1978).

Hungr, O. Momentum transfer and friction in the debris of rock avalanches: Discussion. Can. Geotech. J. 27, 697 (1990).

Van Gassen, W. & Cruden, D. M. Momentum transfer and friction in the debris of rock avalanches: Reply. Can. Geotech. J. 27, 698–699 (1990).

Erlichson, H. A mass-change model for the estimation of debris-flow runout, a second discussion: Conditions for the application of the rocket equation. J. Geol. 99, 633–634 (1991).

Iverson, R. M. & Denlinger, R. P. Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory. J. Geophys. Res. 106, 537–552 (2001).

Iverson, R. M. & Vallance, J. W. New views of granular mass flows. Geology 29, 115–118 (2001).

Logan, M. & Iverson, R. M. Video Documentation of Experiments at the USGS Debris-flow Flume, 1992–2009. US Geological Survey Open-file Report 2007-1315, version 2.0 (2007) http://pubs.usgs.gov/of/2007/1315/ .

Hungr, O. Analysis of debris flow surges using the theory of uniformly progressive flow. Earth Surf. Process Landf. 25, 483–495 (2000).

McArdell, B. W., Bartelt, P. & Kowaslski, J. Field observations of basal forces and fluid pore pressure in a debris flow. Geophys. Res. Lett. 34, L07406 (2007).

McCoy, S. W. et al. Evolution of a natural debris flow: In situ measurements of flow dynamics, video imagery, and terrestrial laser scanning. Geology 38, 735–738 (2010).

Sharp, R. P. & Nobles, L. H. Mudflow of 1941 at Wrightwood, southern California. Geol. Soc. Am. Bull. 64, 547–560 (1953).

Pierson, T. C. in Hillslope Processes (ed. Abrahams, A. D.) 269–296 (Allen & Unwin, 1986).

Iverson, R. M., Reid, M. E. & LaHusen, R. G. Debris-flow mobilization from landslides. Annu. Rev. Earth Planet. Sci. 25, 85–138 (1997).

Iverson, R. M. et al. Acute sensitivity of landslide rates to initial soil porosity. Science 290, 513–516 (2000).

Iverson, R. M. Regulation of landslide motion by dilatancy and pore-pressure feedback. J. Geophys. Res. 110, F02015 (2005).

Roche, O., Montserrat, S., Niño, Y. & Tamburrino, A. Pore fluid pressure and internal kinematics of gravitational laboratory air-particle flows: Insights into the emplacement dynamics of pyroclastic flows. J. Geophys. Res. 115, B09206 (2010).

Kizito, F. et al. Frequency, electrical conductivity and temperature analysis of a low-cost capacitance soil moisture sensor. J. Hydrol. 352, 367–378 (2008).