Positive emotion broadens attention focus through decreased position-specific spatial encoding in early visual cortex: Evidence from ERPs
Tóm tắt
Recent evidence has suggested that not only stimulus-specific attributes or top-down expectations can modulate attention selection processes, but also the actual mood state of the participant. In this study, we tested the prediction that the induction of positive mood can dynamically influence attention allocation and, in turn, modulate early stimulus sensory processing in primary visual cortex (V1). High-density visual event-related potentials (ERPs) were recorded while participants performed a demanding task at fixation and were presented with peripheral irrelevant visual textures, whose position was systematically varied in the upper visual field (close, medium, or far relative to fixation). Either a neutral or a positive mood was reliably induced and maintained throughout the experimental session. The ERP results showed that the earliest retinotopic component following stimulus onset (C1) strongly varied in topography as a function of the position of the peripheral distractor, in agreement with a near–far spatial gradient. However, this effect was altered for participants in a positive relative to a neutral mood. On the contrary, positive mood did not modulate attention allocation for the central (task-relevant) stimuli, as reflected by the P300 component. We ran a control behavioral experiment confirming that positive emotion selectively impaired attention allocation to the peripheral distractors. These results suggest a mood-dependent tuning of position-specific encoding in V1 rapidly following stimulus onset. We discuss these results against the dominant broaden-and-build theory.
Tài liệu tham khảo
Ashby, F. G., Isen, A. M., & Turken, A. U. (1999). A neuropsychological theory of positive affect and its influence on cognition. Psychological Review, 106, 529–550. doi:10.1037/0033-295X.106.3.529
Beck, A. T., Steer, R. A., Ball, R., & Ranieri, W. F. (1996). Comparison of Beck Depression Inventories-IA and -II in psychiatric outpatients. Journal of Personality Assessment, 67, 588–597. doi:10.1207/s15327752jpa6703_13
Biss, R. K., & Hasher, L. (2011). Delighted and distracted: Positive affect increases priming for irrelevant information. Emotion, 11, 1474–1478.
Biss, R. K., Hasher, L., & Thomas, R. C. (2010). Positive mood is associated with the implicit use of distraction. Motivation and Emotion, 34, 73–77.
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652. doi:10.1037/0033-295X.108.3.624
Bower, G. H., & Mayer, J. D. (1989). In search of mood-dependent retrieval. Journal of Social Behavior and Personality, 4, 121–156.
Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315, 1860–1862. doi:10.1126/science.1138071
Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51, 1484–1525. doi:10.1016/j.visres.2011.04.012
Carver, C. S., & White, T. L. (1994). Behavioral-inhibition, behavioral activation, and affective responses to impending reward and punishment: The Bis–Bas scales. Journal of Personality and Social Psychology, 67, 319–333.
Castiello, U., & Umiltà, C. (1990). Size of the attentional focus and efficiency of processing. Acta Psychologica, 73, 195–209.
Castiello, U., & Umiltà, C. (1992). Splitting focal attention. Journal of Experimental Psychology: Human Perception and Performance, 18, 837–848. doi:10.1037/0096-1523.18.3.837
Clark, V. P., Fan, S., & Hillyard, S. A. (1995). Identification of early visual evoked potential generators by retinotopic and topographic analyses. Human Brain Mapping, 2, 170–187.
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201–215.
Crawford, J. R., & Henry, J. D. (2004). The positive and negative affect schedule (PANAS): Construct validity, measurement properties and normative data in a large non-clinical sample. British Journal of Clinical Psychology, 43, 245–265.
Derryberry, D., & Reed, M. A. (1994). Temperament and attention: Orienting toward and away from positive and negative signals. Journal of Personality and Social Psychology, 66, 1128–1139.
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222. doi:10.1146/annurev.ne.18.030195.001205
Desseilles, M., Balteau, E., Sterpenich, V., Dang-Vu, T. T., Darsaud, A., Vandewalle, G., . . . Schwartz, S. (2009). Abnormal neural filtering of irrelevant visual information in depression. Journal of Neuroscience, 29, 1395–1403. doi:10.1523/JNEUROSCI.3341-08.2009
Di Russo, F., Martínez, A., Sereno, M. I., Pitzalis, S., & Hillyard, S. A. (2002). Cortical sources of the early components of the visual evoked potential. Human Brain Mapping, 15, 95–111.
Dreisbach, G., & Goschke, T. (2004). How positive affect modulates cognitive control: Reduced perseveration at the cost of increased distractibility. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30, 343–353. doi:10.1037/0278-7393.30.2.343
Egeth, H. E., & Yantis, S. (1997). Visual attention: Control, representation, and time course. Annual Review of Psychology, 48, 269–297. doi:10.1146/annurev.psych.48.1.269
Ericsson, E., Olofsson, J. K., Nordin, S., Rudolfsson, T., & Sandstrom, G. (2008). Is the P600/SPS affected by the richness of semantic content? A linguistic ERP study in Swedish. Scandinavian Journal of Psychology, 49, 1–9.
Eriksen, C. W., & Yeh, Y. Y. (1985). Allocation of attention in the visual field. Journal of Experimental Psychology: Human Perception and Performance, 11, 583–597. doi:10.1037/0096-1523.11.5.583
Estrada, C. A., Isen, A. M., & Young, M. J. (1997). Positive affect facilitates integration of information and decreases anchoring in reasoning among physicians. Organizational Behavior and Human Decision Processes, 72, 117–135.
Fredrickson, B. (2001). The role of positive emotions in positive psychology: The broaden-and-build theory of positive emotions. American Psychologist, 56, 218–226.
Fredrickson, B., & Levenson, R. W. (1998). Positive emotions speed recovery from the cardiovascular sequelae of negative emotions. Cognition and Emotion, 12, 191–220.
Gable, P. A., & Harmon-Jones, E. (2008). Approach-motivated positive affect reduces breadth of attention. Psychological Science, 19, 476–482. doi:10.1111/j.1467-9280.2008.02112.x
Gable, P. A., & Harmon-Jones, E. (2010). The blues broaden, but the nasty narrows: Attentional consequences of negative affects low and high in motivational intensity. Psychological Science, 21, 211–215.
Gasper, K., & Clore, G. L. (2002). Attending to the big picture: Mood and global versus local processing of visual information. Psychological Science, 13, 34–40. doi:10.1111/1467-9280.00406
Gomez Gonzalez, C. M., Clark, V. P., Fan, S., Luck, S. J., & Hillyard, S. A. (1994). Sources of attention-sensitive visual event-related potentials. Brain Topography, 7, 41–51.
Gratton, G., Coles, M. G. H., & Donchin, E. (1983). Filtering for spatial-distribution—A new approach (vector filter). Psychophysiology, 20, 443–444.
Gray, J. R. (2001). Emotional modulation of cognitive control: Approach–withdrawal states double-dissociate spatial from verbal two-back task performance. Journal of Experimental Psychology: General, 130, 436–452.
Gray, J. R. (2004). Integration of emotion and cognitive control. Current Directions in Psychological Science, 13, 46–48.
Herrmann, C. S., & Knight, R. T. (2000). Mechanisms of human attention: Event-related potentials and oscillations. Neuroscience and Biobehavioral Reviews, 25, 465–476.
Hickey, C., Chelazzi, L., & Theeuwes, J. (2010). Reward changes salience in human vision via the anterior cingulate. Journal of Neuroscience, 30, 11096–11103. doi:10.1523/JNEUROSCI.1026-10.2010
Hillyard, S. A., & Anllo-Vento, L. (1998). Event-related brain potentials in the study of visual selective attention. Proceedings of the National Academy of Sciences, 95, 781–787.
Holmes, E. A. (2006). Positive interpretation training: Effects of mental imagery versus verbal training on positive mood. Behavior Therapy, 37, 237.
Holmes, E. A., Coughtrey, A. E., & Connor, A. (2008). Looking at or through rose-tinted glasses? imagery perspective and positive mood. Emotion, 8, 875–879.
Isen, A. M. (2000). Positive affect and decision making. In M. Lewis & J. M. Haviland-Jones (Eds.), Handbook of emotions (2nd ed., pp. 417–435). New York, NY: Guilford Press.
Isen, A. M., & Daubman, K. A. (1984). The influence of affect on categorization. Journal of Personality and Social Psychology, 47, 1206–1217.
Isen, A. M., Daubman, K. A., & Nowicki, G. P. (1987). Positive affect facilitates creative problem-solving. Journal of Personality and Social Psychology, 52, 1122–1131.
Isen, A. M., Rosenzweig, A. S., & Young, M. J. (1991). The influence of positive affect on clinical problem-solving. Medical Decision Making, 11, 221–227.
Ivry, R. B., & Robertson, L. C. (1998). The two sides of perception. Cambridge, MA: MIT Press.
Jeffreys, D. A., & Axford, J. G. (1972). Source locations of pattern-specific components of human visual evoked-potentials: 1. Component of striate cortical origin. Experimental Brain Research, 16, 1–21.
Kim, K. H., Kim, J. H., Yoon, J., & Jung, K.-Y. (2008). Influence of task difficulty on the features of event-related potential during visual oddball task. Neuroscience Letters, 445, 179–183.
Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38, 557–577.
Kringelbach, M. L., & Rolls, E. T. (2004). The functional neuroanatomy of the human orbitofrontal cortex: Evidence from neuroimaging and neuropsychology. Progress in Neurobiology, 72, 341–372.
Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21, 451–468. doi:10.1037/0096-1523.21.3.451
Lavie, N. (2005). Distracted and confused? Selective attention under load. Trends in Cognitive Sciences, 9, 75–82. doi:10.1016/j.tics.2004.12.004
Lavie, N., Hirst, A., de Fockert, J. W., & Viding, E. (2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133, 339–354. doi:10.1037/0096-3445.133.3.339
Lavie, N., & Tsal, Y. (1994). Perceptual load as a major determinant of the locus of selection in visual attention. Perception & Psychophysics, 56, 183–197. doi:10.3758/BF03213897
Marois, R., & Ivanoff, J. (2005). Capacity limits of information processing in the brain. Trends in Cognitive Sciences, 9, 296–305. doi:10.1016/j.tics.2005.04.010
Martínez, A., Anllo-Vento, L., Sereno, M. I., Frank, L. R., Buxton, R. B., Dubowitz, D. J., . . . Hillyard, S. A. (1999). Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature Neuroscience, 2, 364–369. doi:10.1038/7274
McCarthy, G., & Donchin, E. (1981). A metric for thought: A comparison of P300 latency and reaction time. Science, 211, 77–80.
Michel, C. M., Seeck, M., & Landis, T. (1999). Spatiotemporal dynamics of human cognition. News in Physiological Sciences, 14, 206–214.
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202. doi:10.1146/annurev.neuro.24.1.167
Mitterschiffthaler, M. T., Fu, C. H. Y., Dalton, J. A., Andrew, C. M., & Williams, S. C. R. (2007). A functional MRI study of happy and sad affective states induced by classical music. Human Brain Mapping, 28, 1150–1162.
Moriya, H., & Nittono, H. (2011). Effect of mood states on the breadth of spatial attentional focus: An event-related potential study. Neuropsychologia, 49, 1162–1170. doi:10.1016/j.neuropsychologia.2011.02.036
Müller, N. G., Bartelt, O. A., Donner, T. H., Villringer, A., & Brandt, S. A. (2003). A physiological correlate of the “Zoom Lens” of visual attention. Journal of Neuroscience, 23, 3561–3565.
Murray, M. M., Brunet, D., & Michel, C. M. (2008). Topographic ERP analyses: A step-by-step tutorial review. Brain Topography, 20, 249–264.
Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the P3, and the locus coeruleus–norepinephrine system. Psychological Bulletin, 131, 510–532. doi:10.1037/0033-2909.131.4.510
Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1995). Segmentation of brain electrical activity into microstates: Model estimation and validation. IEEE Transactions in Biomedical Engineering, 42, 658–665.
Pessoa, L., & Engelmann, J. B. (2010). Embedding reward signals into perception and cognition. Frontiers in Neuroscience, 4, 1–8.
Pogarell, O., Padberg, F., Karch, S., Segmiller, F., Juckel, G., Mulert, C., . . . Koch, W. (2011). Dopaminergic mechanisms of target detection—P300 event related potential and striatal dopamine. Psychiatry Research: Neuroimaging, 194, 212–218. doi:10.1016/j.pscychresns.2011.02.002
Polich, J. (2007). Updating p300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 2128–2148.
Polich, J., & Kok, A. (1995). Cognitive and biological determinants of P300: An integrative review. Biological Psychology, 41, 103–146.
Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42.
Posner, M. I., & Presti, D. E. (1987). Selective attention and cognitive control. Trends in Neurosciences, 10, 13–17.
Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109, 160–174. doi:10.1037/0096-3445.109.2.160
Pourtois, G., Dan, E. S., Grandjean, D., Sander, D., & Vuilleumier, P. (2005a). Enhanced extrastriate visual response to bandpass spatial frequency filtered fearful faces: Time course and topographic evoked-potentials mapping. Human Brain Mapping, 26, 65–79. doi:10.1002/hbm.20130
Pourtois, G., Delplanque, S., Michel, C., & Vuilleumier, P. (2008). Beyond conventional event-related brain potential (ERP): Exploring the time-course of visual emotion processing using topographic and principal component analyses. Brain Topography, 20, 265–277. doi:10.1007/s10548-008-0053-6
Pourtois, G., De Pretto, M., Hauert, C. A., & Vuilleumier, P. (2006). Time course of brain activity during change blindness and change awareness: Performance is predicted by neural events before change onset. Journal of Cognitive Neuroscience, 18, 2108–2129. doi:10.1162/jocn.2006.18.12.2108
Pourtois, G., Grandjean, D., Sander, D., & Vuilleumier, P. (2004). Electrophysiological correlates of rapid spatial orienting towards fearful faces. Cerebral Cortex, 14, 619–633. doi:10.1093/cercor/bhh023
Pourtois, G., Thut, G., Grave de Peralta, R., Michel, C., & Vuilleumier, P. (2005b). Two electrophysiological stages of spatial orienting towards fearful faces: Early temporo-parietal activation preceding gain control in extrastriate visual cortex. NeuroImage, 26, 149–163. doi:10.1016/j.neuroimage.2005.01.015
Rauss, K. S., Pourtois, G., Vuilleumier, P., & Schwartz, S. (2009). Attentional load modifies early activity in human primary visual cortex. Human Brain Mapping, 30, 1723–1733. doi:10.1002/hbm.20636
Rauss, K. S., Schwartz, S., & Pourtois, G. (2011). Top-down effects on early visual processing in humans: A predictive coding framework. Neuroscience and Biobehavioral Reviews, 35, 1237–1253.
Reisberg, D., Pearson, D. G., & Kosslyn, S. M. (2003). Intuitions and introspections about imagery: The role of imagery experience in shaping an investigator’s theoretical views. Applied Cognitive Psychology, 17, 147–160.
Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306, 443–447. doi:10.1126/science.1100301
Rolls, E. T. (2000). The orbitofrontal cortex and reward. Cerebral Cortex, 10, 284–294.
Rossi, V., & Pourtois, G. (2011). Transient state-dependent fluctuations in anxiety measured using STAI, POMS, PANAS or VAS: A comparative review. Anxiety, Stress, and Coping, 1–43.
Rossi, V., & Pourtois, G. (2012). State-dependent attention modulation of human primary visual cortex: A high density ERP study. NeuroImage, 60, 2365–2378.
Rowe, G., Hirsh, J. B., & Anderson, A. K. (2007). Positive affect increases the breadth of attentional selection. Proceedings of the National Academy of Sciences, 104, 383–388.
Russell, J. A., & Carroll, J. M. (1999). On the bipolarity of positive and negative affect. Psychological Bulletin, 125, 3–30.
Sawaki, R., & Katayama, J. (2007). Difficulty of discrimination modulates attentional capture for deviant information. Psychophysiology, 44, 374–382.
Schwartz, S., Vuillemier, P., Hutton, C., Maravita, A., Dolan, R. J., & Driver, J. (2005). Attentional load and sensory competition in human vision: Modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field. Cerebral Cortex, 15, 770–786.
Shackman, A. J., Maxwell, J. S., McMenamin, B. W., Greischar, L. L., & Davidson, R. J. (2011). Stress potentiates early and attenuates late stages of visual processing. Journal of Neuroscience, 31, 1156–1161.
Spielberger, C. D., Gorsuch, R. L., Lushene, R., Vagg, P. R., & Jacobs, G. A. (1983). Manual for the State–Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press.
Stolarova, M., Keil, A., & Moratti, S. (2006). Modulation of the C1 visual event-related component by conditioned stimuli: Evidence for sensory plasticity in early affective perception. Cerebral Cortex, 16, 876–887.
Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135, 77–99. doi:10.1016/j.actpsy.2010.02.006
Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society Series B, 63, 411–423.
Van Essen, D. C., Anderson, C. H., & Felleman, D. J. (1992). Information processing in the primate visual system: An integrated systems perspective. Science, 255, 419–423.
van Steenbergen, H., Band, G. P. H., & Hommel, B. (2009). Reward counteracts conflict adaptation: Evidence for a role of affect in executive control. Psychological Science, 20, 1473–1477. doi:10.1111/j.1467-9280.2009.02470.x
van Steenbergen, H., Band, G. P. H., & Hommel, B. (2010). In the mood for adaptation: How affect regulates conflict-driven control. Psychological Science, 21, 1629–1634.
Wang, Y., Yang, J. M., Yuan, J. J., Fu, A. G., Meng, X. X., & Li, H. (2011). The impact of emotion valence on brain processing of behavioral inhibitory control: Spatiotemporal dynamics. Neuroscience Letters, 502, 112–116.
Watkins, E. R., & Moberly, N. J. (2009). Concreteness training reduces dysphoria: A pilot proof-of-principle study. Behaviour Research and Therapy, 47, 48–53.
Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54, 1063–1070. doi:10.1037/0022-3514.54.6.1063
Watson, D., Wiese, D., Vaidya, J., & Tellegen, A. (1999). The two general activation systems of affect: Structural findings, evolutionary considerations, and psychobiological evidence. Journal of Personality and Social Psychology, 76, 820–838.
West, G. L., Anderson, A. A., Ferber, S., & Pratt, J. (2011). Electrophysiological evidence for biased competition in V1 for fear expressions. Journal of Cognitive Neuroscience, 23, 3410–3418.
Wolfe, J. M., & Horowitz, T. S. (2004). What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience, 5, 495–501. doi:10.1038/nrn1411