Positive definite solutions and perturbation analysis of a class of nonlinear matrix equations

Journal of Applied Mathematics and Computing - Tập 53 Số 1-2 - Trang 245-269 - 2017
Liang Fang1, Sanyang Liu1, Xi Yin1
1School of Mathematics and Statistics, Xidian University, Xi’an, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Berzig, M.: Solving a class of matrix equations via the Bhaskar-Lakshmikantham coupled fixed point theorem. Applied Mathematics Letters 25, 1638–1643 (2012)

Berzig, M., Duan, X.F., Samet, B.: Positive definite solution of the matrix equation $$X=Q-A^{*}X^{-1}A+B^{*}X^{-1}B$$ X = Q - A ∗ X - 1 A + B ∗ X - 1 B via Bhaskar-Lakshmikantham fixed point theorem. Mathematical Sciences 6, 27–32 (2012)

Bhatia, R.: Matrix Analysis. Graduate Texts in Mathematics. Springer-Verlag, (1997)

Bhaskar, T.G., Lakshmikantham, V.: Fixed point theory in partially ordered metric spaces and applications. Nonlinear Anal. 65, 1379–1393 (2006)

Buzbee, B.L., Golub, G.H., Nilson, C.W.: On direct methods for solving Poisson’s equations. SIAM J. Numer. Anal. 7, 627–656 (1970)

Duan, X.F., Liao, A.P.: On Hermitian positive definite solution of the matrix equation $$X-\sum _{i=1}^{m}A_{i}^{*}X^{r}A_{i}=Q$$ X - ∑ i = 1 m A i ∗ X r A i = Q . J. Comput. Appl. Math. 229(1), 27–36 (2009)

Duan, X.F., Wang, Q.W., Li, C.M.: Positive definite solution of a class of nonlinear matrix equation. Linear and Multilinear Algebra, 1-14 (2013)

Duan, X.F., Wang, Q.W., Liao, A.P.: On the matrix equation $$X-\sum _{i=1}^{m}N_{i}^{*}X^{-1}N_{i}=I$$ X - ∑ i = 1 m N i ∗ X - 1 N i = I arising in an interpolation problem. Linear and Multilinear Algebra 61(9), 1992–1205 (2013)

Guo, C.H., Kuo, Y.C., Lin, W.W.: Numerical solution of nonlinear matrix equations arising from Green’s function calculations in nano research. J. Comput. Appl. Math. 236, 4166–4180 (2012)

Hasanov, V.I.: Positive definite solutions of the matrix equations $$X\pm A^{*}X^{-q}A=Q$$ X ± A ∗ X - q A = Q . Linear Algebra Appl. 404, 166–182 (2005)

Liu, A., Chen, G.: On the Hermitian positive definite solutions of nonlinear matrix equation $$X^s+\sum _{i=1}^{m}A_{i}^{*}X^{-t_1}A_{i}=Q$$ X s + ∑ i = 1 m A i ∗ X - t 1 A i = Q . Applied Mathematics and Computation 243, 950–959 (2014)

Lancaster, P., Rodman, L.: Algebraic Riccati Equations. Oxford Science Publishers, Oxford (1995)

Li, J., Zhang, Y.H.: Perturbation analysis of the matrix equation $$X-A^{*}X^{-p}A=Q$$ X - A ∗ X - p A = Q . Linear Algebra Appl. 431, 936–945 (2009)

Li, Z.Y., Zhou, B., James, L.: Towards positive definite solutions of a class of nonlinear matrix equations. Applied Mathematics and Computation 237, 546–559 (2014)

Lim, Y.: Solving the nonlinear matrix equation $$X=Q+\Sigma _{i=1}^{m}M_{i}X^{\delta _{i}}M_{i}^{*}$$ X = Q + Σ i = 1 m M i X δ i M i ∗ via a contraction principal. Linear Algebra Appl. 430, 1380–1383 (2009)

Meini, B.: Efficient computation of the extreme solutions of $$X+A^{*}X^{-1}A=Q$$ X + A ∗ X - 1 A = Q and $$X-A^{*}X^{-1}A=Q$$ X - A ∗ X - 1 A = Q . Math. Comput. 71, 1189–1204 (2002)

Monsalve, M., Raydan, M.: Corrigendum to “A new inversion-free method for a rational matrix equation” [Linear Algebra Appl. 433(1)(2010)64-71]. Linear Algebra Appl. 448, 343–344 (2014)

Peng, Z.Y., El-Sayed, S.M., Zhang, X.L.: Iterative methods for the extremal positive definite solution of the matrix equation $$X+A^{*}X^{-\alpha }A=Q$$ X + A ∗ X - α A = Q . J. Comput. Appl. Math. 2007, 520–527 (2000)

Ran, A.C.M., Reurings, M.C.B.: A nonlinear matrix equation connected to interpolation theory. Linear Algebra Appl. 379, 289–304 (2004)

Rice, J.R.: A theory of condition. SIAM J. Numer. Anal. 3, 287–310 (1966)

Sakhnovich, L.A.: Interpolation Theory and its Applications. In: Mathematics and its Applications, 428, Kilwer Academic, Dordrecht (1997)

Sarhan, A.M., El-Shazy, N.M., Shehata, E.M.: On the existence of extremal positive definite solutions of the nonlinear matrix equation $$X^{r}+\Sigma _{i=1}^{m}A_{i}^{*}X^{\delta _{i}}A_{i}=I$$ X r + Σ i = 1 m A i ∗ X δ i A i = I . Math. Comput. Model. 51, 1107–1117 (2010)

Sun, J.G., Xu, S.F.: Perturbation analysis of the maximal solution of the matrix equation $$X+A^{*}X^{-1}A=P. \Pi $$ X + A ∗ X - 1 A = P . Π . Linear Algebra Appl. 362, 211–228 (2003)

Yin, X.Y., Liu, S.Y., Fang, L.: Solutions and perturbation estimates for the matrix equation $$X^{s}+ A^{*}X^{-t}A=Q$$ X s + A ∗ X - t A = Q . Linear Algebra Appl. 431, 1409–1421 (2009)

Yin, X.Y., Wen, R.P., Fang, L.: On the nonlinear matrix equation $$X+\sum _{i=1}^{m}A_{i}^{*}X^{-q}A_{i}=Q (0<q\le 1)$$ X + ∑ i = 1 m A i ∗ X - q A i = Q ( 0 < q ≤ 1 ) . Bull. Korean Math. Soc. 51(3), 739–763 (2014)

Yong, J.M., Zhou, Z.Y.: Stochastic controls, Hamiltonian systems and HJB equations. Springer-Verlag, New York(NY) (1999)