Positive and Negative Hierarchies of Integrable Lattice Models Associated with a Hamiltonian Pair

Springer Science and Business Media LLC - Tập 43 - Trang 219-235 - 2004
Wen-Xiu Ma1, Xi-Xiang Xu2
1Department of Mathematics, University of South Florida, Tampa
2Department of Basic Courses, Shandong University of Science and Technology, Taian, People's Republic of China

Tóm tắt

A difference Hamiltonian operator involving two arbitrary constants is presented, and it is used to construct a pair of nondegenerate Hamiltonian operators. The resulting Hamiltonian pair yields two difference hereditary operators, and the associated positive and negative hierarchies of nonlinear integrable lattice models are derived through the bi-Hamiltonian formulation. Moreover, the two lattice hierarchies are proved to have discrete zero curvature representations associated with a discrete spectral problem, which also shows that the positive and negative hierarchies correspond to positive and negative power expansions of Lax operators with respect to the spectral parameter, respectively. The use of zero curvature equation leads us to conclude that all resulting integrable lattice models are local and that the integrable lattice models in the positive hierarchy are of polynomial type and the integrable lattice models in the negative hierarchy are of rational type.

Tài liệu tham khảo

Ablowitz, M. J. and Clarkson, P. A. (1991). Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge. Antonowitz, M. and Fordy, A. P. (1987). Physica D 28, 345. Blaszak, M. (1998). Multi-Hamiltonian Theory of Dynamical Systems, Springer-Verlag, Berlin. Das, A. (1989). Integrable Models, World Scientific, Singapore. Faddeev, L. D. and Takhtajan, L. A. (1987). Hamiltonian Methods in the Theory of Soliton, Springer-Verlag, Berlin. Fuchsstemer, B. and Fokas, A. S. (1981/82). Physica D 4, 47. Gürses, M. and Karasu, A. (1998). Journal of Mathematical Physics 39, 2103. Lax, P. D. (1968). Communications in Pure and Applied Mathematics 21, 467. Ma, W. X. (1990). Acta Mathematicae Applicatae Sinica 13, 484. Ma, W. X. (1998). Journal of Physics A: Mathematical and General 31, 7279. Ma, W. X. and Fuchssteiner, B. (1999). Journal of Mathematical Physics 40, 2400. Ma, W. X. and Pavlov, M. (1998). Physics Letters A 246, 511. Ma, W. X. and Zhou, R. G. (1999). Journal of Mathematical Physics 40, 4419. Magri, F. (1978). Journol of Mathematical Physics 19, 1156. Oevel, W., Zhang, H., and Fuchssteiner, B. (1989). Progress of Theoretical Physics 81, 294. Olver, P. J. (1977). Journal of Mathematical Physics 18, 1212. Olver, P. J. (1986). Applications of Lie Groups to Differential Equations, Springer-Verlag, New York. Ragnisco, O. and Santini, P. M. (1990). Inverse Problems 6, 441. Tu, G. Z. (1989). Journal of Physics A: Mathematical and General 22, 2375. Tu, G. Z. (1990). Journal of Physics A: Mathematical and General 23, 3903. Tu, G. Z. and Ma, W. X. (1992). Journal of Partial Differential Equations 5, 43. Zakharov, V. E. and Konopelchenko, B. G. (1984). Communications in Mathematical Physics 94, 483. Zeng, Y. B. and Rauch-Wojciechowski, S. (1995). Journal of Physics A. Mathematical and General 28, 113.