Positional Characteristics for Efficient Number Comparison over the Homomorphic Encryption
Tóm tắt
Từ khóa
Tài liệu tham khảo
Massobrio, R., Nesmachnow, S., Tchernykh, A., Avetisyan, A., and Radchenko, G., Towards a cloud computing paradigm for big data analysis in smart cities, Program. Comput. Software, 2018, vol. 44, no. 3, pp. 181–189.
Varnovskiy, N.P., Martishin, S.A., Khrapchenko, M.V., and Shokurov, A.V., Secure cloud computing based on threshold homomorphic encryption, Program. Comput. Software, 2015, vol. 41, no. 4, pp. 215–218.
Chang, C.H., Molahosseini, A.S., Zarandi, A.A.E., and Tay, T.F., Residue number systems: a new paradigm to datapath optimization for low-power and high-performance digital signal processing applications, IEEE Circuits Syst. Mag., 2015, vol. 15, no. 4, pp. 26–44.
Chervyakov, N., Babenko, M., Tchernykh, A., Kucherov, N., Miranda-López, V., and Cortés-Mendoza, J.M., AR-RRNS: configurable reliable distributed data storage systems for Internet of things to ensure security, Future Gener. Comput. Syst., 2019, vol. 92, pp. 1080–1092. https://doi.org/10.1016/j.future.2017.09.061
Sousa, L., Antao, S., and Martins, P., Combining residue arithmetic to design efficient cryptographic circuits and systems, IEEE Circuits Syst. Mag., 2016, vol. 16, no. 4, pp. 6–32.
Chervyakov, N.I., Lyakhov, P.A., and Babenko, M., Digital filtering of images in a residue number system using finite-field wavelets, Autom. Control Comput. Sci., 2014, vol. 48, no. 3, pp. 180–189.
Ye, R., Boukerche, A., Wang, H., Zhou, X., and Yan, B., RESIDENT: a reliable residue number system-based data transmission mechanism for wireless sensor networks, Wireless Networks, 2018, vol. 24, no. 2, pp. 597–610.
Tchernykh, A., Schwiegelsohn, U., Talbi, E.G., and Babenko, M., Towards understanding uncertainty in cloud computing with risks of confidentiality, integrity, and availability, J. Comput. Sci., 2019, vol. 36, p. 100581.
Miranda-López, V., Tchernykh, A., Cortés-Mendoza, J.M., Babenko, M., G. Radchenko, Nesmachnow, S., and Du, Z., Experimental analysis of secret sharing schemes for cloud storage based on RNS, Proc. Latin American High Performance Computing Conf., Buenos Aires, 2017, pp. 370–383.
Tchernykh, A., Babenko, M., Chervyakov, N., Cortés-Mendoza, J.M., Kucherov, N., Miranda-López, V., Deryabin, M., Dvoryaninova, I., and Radchenko, G., Towards mitigating uncertainty of data security breaches and collusion in cloud computing, Proc. 28th Int. Workshop on Database and Expert Systems Applications (DEXA), Lyon, 2017, pp. 137–141.
Babenko, M., Chervyakov, N., Tchernykh, A., Kucherov, N., Shabalina, M., Vashchenko, I., Radchenko, G., and Murga, D., Unfairness correction in P2P grids based on residue number system of a special form, Proc. 28th Int. Workshop on Database and Expert Systems Applications (DEXA), Lyon, 2017, pp. 147–151.
Szabo, N.S. and Tanaka, R.I., Residue Arithmetic and Its Applications to Computer Technology, New York: McGraw-Hill, 1967.
Bi, S. and Gross, W.J., The mixed-radix Chinese remainder theorem and its applications to residue comparison, IEEE Trans. Comput., 2008, vol. 57, no. 12), 1624–1632.
Wang, Y., Residue-to-binary converters based on new Chinese remainder theorems, IEEE Trans. Circuits Syst., 2000, vol. 47, no. 3, pp. 197–205.
Dimauro, G., Impedovo, S., and Pirlo, G., A new technique for fast number comparison in the residue number system, IEEE Trans. Comput., 1993, vol. 42, no. 5, pp. 608–612.
Burgess, N., Scaling an RNS number using the core function, Proc. 16th IEEE Symp. on Computer Arithmetic, Santiago de Compostela, 2003, pp. 262–269.
Dimauro, G., Impedovo, S., Modugno, R., Pirlo, G., and Stefanelli, R., Residue-to-binary conversion by the “quotient function”, IEEE Trans. Circuits Syst., 2003, vol. 50, no. 8, pp. 488–493.
Pirlo, G. and Impedovo, D., A new class of monotone functions of the residue number system, Int. J. Math. Models Methods Appl. Sci., 2013, vol. 7, no. 9, pp. 803–809.
Chervyakov, N.I., Molahosseini, A.S., Lyakhov, P.A., Babenko, M.G., and Deryabin, M.A., Residue-to-binary conversion for general moduli sets based on approximate Chinese remainder theorem, Int. J. Comput. Math., 2017, vol. 94, no. 9, pp. 1833–1849.
Patronik, P. and Piestrak, S.J., Design of reverse converters for general RNS moduli sets {2k, 2n – 1, 2n + 1, 2n + 1 – 1} and {2k, 2n – 1, 2n + 1, 2n – 1 – 1} (n even), IEEE Trans. Circuits Syst., 2014, vol. 61, no. 6, pp. 1687–1700.
Phatak, D.S. and Houston, S.D., New distributed algorithms for fast sign detection in residue number systems (RNS), J. Parallel Distrib. Comput., 2016, vol. 97, pp. 78–95.
Akushskii, I.Ya. and Yuditskii, D.I., Mashinnaya arifmetika v ostatochnykh protsessakh (Machine Arithmetic in Residual Classes), Moscow: Sovetskoe Radio, 1968.
Omondi, A.R. and Premkumar, B., Residue Number Systems: Theory and Implementation, London: Imperial College Press, 2007.
Isupov, K., “An algorithm for magnitude comparison in RNS based on mixed-radix conversion II, Int. J. Comput. Appl., 2016, vol. 141, no. 5.
Van Vu, T., Efficient implementations of the Chinese remainder theorem for sign detection and residue decoding, IEEE Trans. Comput., 1985, vol. 100, no. 7, pp. 646–651.
Mohan, P.A., RNS to binary conversion using diagonal function and Pirlo and Impedovo monotonic function, Circuits, Syst., Signal Process., 2016, vol. 35, no. 3, pp. 1063–1076.