Poset-free families and Lubell-boundedness

Journal of Combinatorial Theory, Series A - Tập 134 - Trang 166-187 - 2015
Jerrold R. Griggs1, Wei-Tian Li2
1Department of Mathematics, University of South Carolina, Columbia, SC, 29208, USA
2Department of Applied Mathematics, National Chung Hsing University, Taichung, 40227, Taiwan

Tài liệu tham khảo

Alon, 2008 Bukh, 2009, Set families with a forbidden poset, Electron. J. Combin., 16, 10.37236/231 Burcsi, 2013, The method of double chains for largest families with excluded subposets, Electron. J. Graph Theory Appl., 1, 40, 10.5614/ejgta.2013.1.1.4 De Bonis, 2007, Largest families without an r-fork, Order, 24, 181, 10.1007/s11083-007-9067-z De Bonis, 2005, Largest family without A∪B⊂C∩D, J. Combin. Theory Ser. A, 111, 331, 10.1016/j.jcta.2005.01.002 Erdős, 1945, On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc., 51, 898, 10.1090/S0002-9904-1945-08454-7 Griggs, 2008, No four subsets forming an N, J. Combin. Theory Ser. A, 115, 677, 10.1016/j.jcta.2007.05.011 Griggs, 2013, The partition method for poset-free families, J. Comb. Optim., 25, 587, 10.1007/s10878-012-9476-9 Griggs, 2012, Diamond-free families, J. Combin. Theory Ser. A, 119, 310, 10.1016/j.jcta.2011.09.002 Griggs, 2009, On families of subsets with a forbidden subposet, Combin. Probab. Comput., 18, 731, 10.1017/S096354830999037X Katona, 1983, Extremal problems with excluded subgraphs in the n-cube, vol. 1018, 84 Kramer, 2013, On diamond-free subposets of the Boolean lattice, J. Combin. Theory Ser. A, 120, 545, 10.1016/j.jcta.2012.11.002 Li, 2011 Lubell, 1966, A short proof of Sperner's lemma, J. Combin. Theory, 1, 299, 10.1016/S0021-9800(66)80035-2 Sperner, 1928, Ein Satz über Untermengen einer endlichen Menge, Math. Z., 27, 544, 10.1007/BF01171114 Stanley, 1997