Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Lựa chọn danh mục đầu tư với chi phí giao dịch dưới các ràng buộc của tỷ lệ thua lỗ kỳ vọng
Tóm tắt
Một nhà đầu tư phải chịu chi phí giao dịch theo tỷ lệ phân bổ quỹ cho nhiều cổ phiếu và tài khoản ngân hàng, nhằm tối đa hóa tỷ lệ tăng trưởng kỳ vọng của giá trị danh mục đầu tư dưới các ràng buộc của Tỷ lệ Thua lỗ Kỳ vọng (ES). Trong một ví dụ số với mười bước thời gian và một cổ phiếu, các đổi mới quan trọng được gây ra bởi sự xuất hiện của ràng buộc Tỷ lệ Thua lỗ Kỳ vọng: Thứ nhất, lợi suất kỳ vọng giảm chưa đến một phần mười khi ràng buộc ES được đưa vào. So với trước đây, vốn kinh tế được đo lường bằng ES, giảm xuống chỉ còn từ một nửa đến ba phần tư, khi ràng buộc ES được áp dụng. Thứ hai, sự phụ thuộc của lợi suất kỳ vọng và ES vào danh mục đầu tư ban đầu, đặc biệt khi chi phí giao dịch cao, phần lớn được loại bỏ khi có sự xuất hiện của ràng buộc ES.
Từ khóa
#tỷ lệ thua lỗ kỳ vọng #chi phí giao dịch #lựa chọn danh mục đầu tư #tăng trưởng kỳ vọng #vốn kinh tếTài liệu tham khảo
Ait-Sahalia Y, Brandt M (2001) Variable selection for portfolio choice. J Finance 56:1297–1351
Akian M, Menaldi JL, Sulem A (1996) On an investment-consumption model with transaction costs. SIAM J Control Optim 34:329–364
Artzner P, Delbaen F, Ebner JM, Heath D (1999) Coherent measures of risk. Mathematical Finance 9:203–228 Also available as http://www.math.ethz.ch/~delbaen/ftp/preprints/CoherentMF.pdf
Artzner P, Delbaen F, Eber JM, Heath D, Ku H (2002) Coherent multiperiod risk measurement. Technical report, ETH Zurich, Available at http://www.math.ethz.ch/~delbaen/ftp/preprints/MULTIPERIOD-3-02.pdf
Barberis N (2000) Investing for the long run when returns are predictable. J Finance 55:225–264
Bielecki TR, Pliska SR (2000) Risk sensitive asset management with transaction costs. Finance Stochastics 4:1–33
Brandt M, Goyal A, Santa-Clara P (2005) A simulation approach to dynamic portfolio choice with an application to learning about return predictability. Rev Financ Stud 18:831–873
Brennan M, Xia Y (2002) Dynamic asset allocation under inflation. J Finance 57:1201–1238
Brennan M, Schwartz E, Lagnado R (1997) Strategic asset allocation. J Econ Dyn Control 21:1377–1403
Cadenillas A (2000) Consumption-investment problems with transaction costs: survey and open problems. Math Methods Oper Res 51:43–68
Cheridito P, Delbaen F, Kupper M (2004) Coherent and convex risk measures for bounded cádlág processes. Stochastic Proc Appl 112:1–22
Cheridito P, Delbaen F, Kupper M (2005) Coherent and convex monetary risk measures for unbounded cádlág processes. Finance Stochastics 9:369–387
Coling Atkinson Stanley R. Pliska PW (1997) Portfolio management with transaction costs. Proc R Soc A 453:551–562
Constantinides GM (1979) Mulitperiod consumption and investment behavior with convex transaction costs. Manag Sci 25:1127–1137
Cox J, Huang CF (1989) Optimal consumption and portfolio policies when asset prices follow a diffucsion process. J Econ Theory 49:33–83
Cuoco D (1997) Optimal consumption and equilibrium prices with portfolio constraints and stochastic income. J Econ Theory 72:33–83
Cuoco D, Liu H (2000) A martingale characterization of consumption choices and hedging costs with margin requirements. Math Finance 10:355–385
Cvitanic J, Karatzas I (1992) Convex duality in constrained portfolio optimization. Ann Appl Prob 2:767–818
Davis MHA, Norman AR (1990) Portfolio selection with transaction costs. Math Oper Res 15:676–713
Delbaen F (2003) Coherent risk measures on general probability spaces. In: Sandmann K, Schonbucher PJ (eds) Advances in stochastics and finance: essays in honour of Dieter Sondermann. Springer, Heidelberg, pp 1–37. Also available as www.math.ethz.ch/~delbaen/ftp/preprints/RiskMeasuresGeneralSpaces.pdf
Fleming WH, Sheu SJ (1999) Optimal long term growth rate of expected utility of wealth. Ann Appl Prob 9:871–903
Föllmer H, Schied A (2004) Stochastic finance: an introduction in discrete time. 2nd edn. vol 27 of de Gruyter Studies in Mathematics. Walter de Gruyter
de Giorgi E (2002) A note on portfolio selection under various risk measures. Technical report, University of Lugano, Available at http://ssrn.com/abstract=762104
Hakkansson NH (1970) Optimal investment and consumption strategies under risk for a class of utility functions. Econometrica 38:585–607
Haugh MB, Kogan L, Wang J (2006) Evaluating portfolio policies: a duality approach. Oper Res 54:405–418
He H, Pearson N (1991) Consumption and portfolio policies with incomplete markets and short sale constraints: the infinite-dimensional case. J Econ Theory 52:259–304
Judd K (1996) Approximation, perturbation, and projection methods in economic analysis. In: Ammann HM, Kendrick DA, Rust J (eds) Handbook of computational economics vol. 1. Elsevier Science, Amsterdam, pp. 509–585
Kabanov Y, Klüppelberg C (2004) A geometric approach to portfolio optimization in models with transaction costs. Finance Stochastics 8:207–227
Karatzas I, Lehoczky J, Sethi S, Shreve SE (1986) Explicit solution of a general consumption/investment problem. Math Oper Res 11:261–294
Kim TS, Omberg E (1996) Dynamic nonmyopic portfolio behavior. Rev Financ Stud 9:141–161
Korn R (1998) Optimal Portfolios: Stochastic models for optimal investment and risk management in continuous time. World Scientific, Singapore
Kramkov D, Schachermayer W (1999) The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann Appl Prob 9:904–950
Lakner P, Nygren LM (2006) Portfolio optimization with downside risk constraints. Math Finance 16:283–299
Liu J (2006) Portfolio choice in stochastic environments. Technical report, University of California at San Diego, Available at http://management.ucsd.edu/pdf/portfolio.pdf
Liu J, Longstaff F (2004) Losing money on arbitrages: Optimal dynamic portfolio choice in markets with arbitrage opportunities. Rev Financ Stud 17:611–641
Lynch A (2001) Portfolio choice and equity characteristics: Characterizing the hedging demands induced by return predictability. J Financ Econ 62:67–130
Magill MJP, Constantinides GM (1976) Portfolio selection with transaction costs. J Econ Theory 13:245–263
Markowitz HM (1952) Portfolio selection. J Finance 7:77–91
Markowitz HM (1959) Portfolio selection. 1991 edn. Blackwell, Oxford
Merton RC (1969) Life time portfolio selection under uncertainty: the continuous time case. Rev Econ Stat LI:247–257
Merton RC (1971) Optimal consumption and portfolio rules in a continuous-time model. J Econ Theory 3:373–413 (Erratum in Journal of Economic Theory 6:213–214, 1973)
Morton AJ, Pliska SA (1995) Optimal portfolio panagement with fixed transaction costs. Math Finance 5:337–356
Munk C (2000) Optimal consumption/investment policies with unciversifiable income risk and liquidity constraints. J Econ Dyn Control 24:1315–1343
Muthuraman K, Kumar S (2006) Multidimensional portfolio optimization with proportional transaction costs. Math Finance 16:301–335
Pliska SA (1986) A stochastic calculus model of continuous trading: optimal portfolios. Math Oper Res 11:371–382
Rogers LCG (2003) Duality in constrained optimal investment and consumption problems: a synthesis. In: Bank P, Baudoin F, Föllmer H, Rogers LCG, Soner M, Touzi N (eds) Paris-Princeton Lectures on Mathematical Finance 2002. vol 1814 of Lecture Notes in Mathematics. Berlin, pp 95–131
Rust J (1996) Numerical dynamic programming in economics. In: Ammann HM, Hendrick DA, Rust J (eds) Handbook of computational economics vol, 1. Elsevier, Amsterdam, pp 619–729
Sharpe WF (1964) Capital asset prices: a theory of market equilibrium under conditions of risk. J Finance 19:425–442
Shreve SE, Soner HM (1994) Optimal investment and consumption with transaction costs. Ann Appl Prob 4:909–962
Taksar M, Klass MJ, Assaf D (1988) A diffusion model for optimal portfolio selection in the presence of brokerage fees. Math Oper Res 13:277–294
Tobin J (1958) Liquidity preference as behavior towards risk. Rev Econ Stud 25:65–86
Weber S (2006) Distribution-invariant risk measures, information, and dynamic consistency. Math Finance 16:419–442
Xia Y (2001) Learning about predictability: The effect of parameter uncertainty on optimal dynamic asset allocation. J Finance 56:205–247