Portable Spectroscopy

Applied Spectroscopy - Tập 72 Số 12 - Trang 1701-1751 - 2018
Richard A. Crocombe1
1Crocombe Spectroscopic Consulting, Winchester, MA, USA

Tóm tắt

Until very recently, handheld spectrometers were the domain of major analytical and security instrument companies, with turnkey analyzers using spectroscopic techniques from X-ray fluorescence (XRF) for elemental analysis (metals), to Raman, mid-infrared, and near-infrared (NIR) for molecular analysis (mostly organics). However, the past few years have seen rapid changes in this landscape with the introduction of handheld laser-induced breakdown spectroscopy (LIBS), smartphone spectroscopy focusing on medical diagnostics for low-resource areas, commercial engines that a variety of companies can build up into products, hyphenated or dual technology instruments, low-cost visible-shortwave NIR instruments selling directly to the public, and, most recently, portable hyperspectral imaging instruments. Successful handheld instruments are designed to give answers to non-scientist operators; therefore, their developers have put extensive resources into reliable identification algorithms, spectroscopic libraries or databases, and qualitative and quantitative calibrations. As spectroscopic instruments become smaller and lower cost, “engines” have emerged, leading to the possibility of being incorporated in consumer devices and smart appliances, part of the Internet of Things (IOT). This review outlines the technologies used in portable spectroscopy, discusses their applications, both qualitative and quantitative, and how instrument developers and vendors have approached giving actionable answers to non-scientists. It outlines concerns on crowdsourced data, especially for heterogeneous samples, and finally looks towards the future in areas like IOT, emerging technologies for instruments, and portable hyphenated and hyperspectral instruments.

Từ khóa


Tài liệu tham khảo

R.A. Crocombe. “Handheld Spectrometers: The State of the Art”. In: M.A. Druy, R.A. Crocombe, editors. Next-Generation Spectroscopic Technologies VI. Proc. SPIE. 2013. 8726: 87260R. doi:10.1117/12.2017892.

Crocombe R.A., 2016, Appl. Spectrosc, 70, 730, 10.1177/0003702816645281

Crocombe R.A., 2008, Spectroscopy, 23, 38

Peplow M., 2018, Chem. Eng. News, 96, 3

C. Bouyé, B. d’Humièresa. “Miniature and Micro Spectrometers Market: Who is Going to Catch the Value?” In: Y.G. Soskind, C. Olson, editors. Photonic Instrumentation Engineering IV. Proc. SPIE. 2017. 10110: 101101P. doi: 10.1117/12.2254033.

G. Liangquan. “Geochemical Prospecting”. In: P.J. Potts, M. West, editors. Portable X-ray Fluorescence Spectrometry, Capabilities for in Situ Analysis. Cambridge, UK: RSC Publishing, 2008. Chap. 7, Pp. 141–173.

S. Piorek. “Alloy Identification and Analysis with a Field-Portable XRF Analyzer”. In: P.J. Potts, M. West, editors. Portable X-ray Fluorescence Spectrometry, Capabilities for in Situ Analysis. Cambridge, UK: RSC Publishing, 2008. Chap. 6, Pp. 98–140.

V. Otieno-Alego, N. Spears. “Counter Terrorism and Homeland Security”. In: J.M. Chalmers, H.G.M. Edwards, M.D. Hargreaves, editors. Infrared and Raman Spectroscopy in Forensic Science. Chichester, UK: John Wiley and Sons, 2011. Chap. 5, Pp. 207–233.

M.D. Hargreaves. “Drugs of Abuse–Application of Handheld FT-IR and Raman Spectrometers”. In: J.M. Chalmers, H.G.M. Edwards, M.D. Hargreaves, editors. Infrared and Raman Spectroscopy in Forensic Science. Chichester, UK: John Wiley and Sons, 2011. Chap. 6.1, Pp. 339–351.

A. O’Neil. “Counterfeit Consumer Products”. In: J.M. Chalmers, H.G.M. Edwards, M.D. Hargreaves, editors. Infrared and Raman Spectroscopy in Forensic Science. Chichester, UK: John Wiley and Sons, 2011. Chap. 9.1, Pp. 515–560.

K. Kwok, K.L. Taylor. “Raman Spectroscopy for the Analysis of Counterfeit Tablets”. In: J.M. Chalmers, H.G.M. Edwards, M.D. Hargreaves, editors. Infrared and Raman Spectroscopy in Forensic Science. Chichester, UK: John Wiley and Sons, 2011. Chap. 9.2, Pp. 561–572.

Green R., 2008, Pharm. Technol, 32, 148

K.A. Bakeev. Process Analytical Technology. 2nd ed. Chichester, UK: John Wiley and Sons, Ltd., 2010.

C.H. Arnaud. “Mini Mass Specs are Still Looking for an Audience”. Chem. Eng. News. 2018: 96(22), and Subsequent Articles in That Issue. https://cen.acs.org/analyticalchemistry/massspectrometry/mini-mass-specs-still-looking/96/i22 [accessed Jul 9 2018].

10.1016/j.ijms.2017.11.006

10.1021/acs.analchem.5b03070

10.1146/annurev-anchem-060908-155229

P.E. Leary, B.W. Kammrath, J.A. Reffner. “Field-Portable Gas Chromatography-Mass Spectrometry”. In: R.A. Meyers, editor. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. Chichester, UK: John Wiley and Sons, 2018. Pp. 1-23.

10.1177/0003702816638294

10.1016/j.aca.2011.02.026

10.1016/S1044-0305(01)00251-3

M. Joshi. “Ion Mobility Spectrometry”. Forensic Science Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. Chichester, UK: John Wiley and Sons, 2017. Pp. 1-22.

10.1039/C4AN01100G

10.1039/C4AN01101E

10.1021/ac100931n

10.1016/S0039-9140(00)00565-8

B. Blümich. “Miniature and Tabletop Nuclear Magnetic Resonance Spectrometers”. In: R.A. Meyers, editor. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. Chichester, UK: John Wiley and Sons, 2016. Pp. 1-31.

Bruker. “microESR: The Portable Research-Grade Instrument”. https://www.bruker.com/products/mr/epr/microesr/overview.html [accessed Jan 23 2018].

C.J. White, C.T. Elliott, J.R. White. “Micro-ESR: Miniature Electron Spin Resonance Spectroscopy”. Labcompare. 2011. https://www.labcompare.com/10-featured-articles/1458-micro-esr-miniature-electron-spin-resonance-spectroscopy/ [accessed Oct 9 2018].

C.J. White, C.T. Elliott, J.R. White. “Micro-Electron Spin Resonance (ESR/EPR) Spectroscopy”. In: M.A. Druy, C.D. Brown, R.A. Crocombe, editors. Next-Generation Spectroscopic Technologies III. Proc. SPIE. 2010. 7680: 768000. doi: 10.1117/12.849682.

10.1063/1.5025729

I.N. Duling. “Handheld THz Security Imaging”. In: N.K. Dhar, A.K. Dutta, editors. Image Sensing Technologies: Materials, Devices, Systems, and Applications III.Proc. SPIE. 2016. 9854: 98540N. doi: 10.1117/12.2224095.

X.C. Zhang, A. Redo-Sanchez. “Handheld THz Instrumentation”. SPIE Professional. 2012. https://spie.org/membership/spie-professional-magazine/spie-professional-archives-and-special-content/april-2012-spie-professional-archive/handheld-thz?sso=1 [accessed Oct 6 2018].

N. Krumbholz, C. Jansen, M. Scheller, T. Müller-Wirts, et al. “Handheld Terahertz Spectrometer for the Detection of Liquid Explosives”. In: K.A. Krapels, N.A. Salmon, editors. Millimetre Wave and Terahertz Sensors and Technology II. Proc. SPIE. 2009. 7485: 748504. doi: 10.1117/12.830381.

10.1117/1.3570648

10.1109/MEMB.2006.1657788

10.1117/1.NPh.4.2.021101

M.B. Simpson. “Near-Infrared Spectroscopy for Process Analytical Technology: Theory, Technology and Implementation”. In: K.A. Bakeev, editor. Process Analytical Technology. 2nd ed. Chichester, UK: John Wiley and Sons, Ltd., 2010. Chap. 5, Pp. 107–155.

B. Smith-Goettler. “On-Line PAT Applications of Spectroscopy in the Pharmaceutical Industry”. In: K.A. Bakeev, editor. Process Analytical Technology. 2nd ed. Chichester, UK: John Wiley and Sons, Ltd., 2010. Chap. 13, Pp. 439–461.

10.1255/jnirs.1122

10.1177/0003702818788374

M.A. Druy, R.A. Crocombe, S.M. Barnett, L.T.M. Profeta, et al., editors. Next-Generation Spectroscopic Technologies XI. Proc. SPIE. 2018. 10657.

M.A. Druy, R.A. Crocombe, S.M. Barnett, L.T.M. Profeta, editors. Next-Generation Spectroscopic Technologies X. Proc. SPIE. 2017. 10210.

M.A. Druy, R.A. Crocombe, editors. Next-Generation Spectroscopic Technologies IX. Proc. SPIE. 2016. 9855.

M.A. Druy, R.A. Crocombe, D.P. Bannon, editors. Next-Generation Spectroscopic Technologies VIII. Proc. SPIE. 2015. 9482.

M.A. Druy, R.A. Crocombe, editors. Next-Generation Spectroscopic Technologies VII. Proc. SPIE. 2014. 9101.

C.V. Thompson, M.G. Geodert. “Field Portable Instrumentation for Gas and Vapor Smaples”. In: R.A. Myers, editor. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. Chichester, UK: John Wiley and Sons, 2018. Pp. 1-60. https://doi.org/10.1002/9780470027318.a0910m.pub2 [accessed Oct 5 2018].

10.1177/0003702815611063

10.1177/0003702815616745

10.1177/0003702815617124

10.1177/0003702815616589

10.1177/0003702815616742

10.1080/05704928.2011.625748

10.1016/j.aca.2018.06.014

10.1039/C5AY02048D

10.3390/s18010223

10.1016/j.trac.2013.01.006

10.1002/xrs.1227

S. Cornaby, K. Kozaczek. “X-ray Sources for Handheld X-ray Fluorescence Instruments”. In: R.A. Myers, editor. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. Chichester, UK: John Wiley and Sons, 2016. Pp. 1-25.

M. Lessard. “Portable XRF in the Metal Lifecycle”. https://www.thermofisher.com/blog/metals/portable-xrf-in-the-metal-lifecycle/ [accessed Jul 6 2017].

B. Mukherji, J.W. Miller, C.W. Yap. “Why Chinese Steel Exports are Stirring Protests”. The Wall Street Journal, Mar 15, 2015. https://www.wsj.com/articles/why-chinese-steel-exports-are-stirring-protests-1426466068 [accessed Oct 6 2018].

The World Bank. “Annual Prices” (October 2018). http://www.worldbank.org/en/research/commodity-markets [accessed Oct 28 2018].

P. Wang. “Review and Recent Progress of Handheld Spectrometry at Thermo Fisher Scientific”. In: M.A. Druy, R.A. Crocombe, D.P. Bannon, editors. Next-Generation Spectroscopic Technologies VIII. Proc. SPIE. 2015. 9482: 948204. doi: 10.1117/12.2178140.

Gatti E., 1984, NIMA, 225, 608

10.1255/nirn.859

B.H. Ray, K.T. Carron. “From Portable Raman to Mobile Raman: The Progression of Raman Spectroscopy”. In: M.A. Druy, R.A. Crocombe, S.M. Barnett, L.T.M. Profeta, et al., editors. Next-Generation Spectroscopic Technologies XI. Proc. SPIE. 2018. 10657: 1065704. doi: 10.1117/12.2303721.

U.S. Military Specifications and Standards. “Department of Defense Test Method Standard for Environmental Engineering Considerations and Laboratory Tests”. MIL-STD-810G. Washington, DC: United States Department of Defense, 2008.

908Devices. “Safety and Security: All Hazards Threat Detection”. http://908devices.com/markets/safety-security/ [accessed Oct 6 2018].

PerkinElmer. “Torion T-9 Portable GC/MS”. http://www.perkinelmer.com/product/torion-t-9-portable-gc-ms-instrument-ntsst090500 [accessed Oct 6 2018].

C. Gardner, R.L. Green. “Identification and Confirmation Algorithms for Handheld Spectrometers”. In: R.A. Myers, editor. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. Chichester, UK: John Wiley and Sons, 2016. Pp. 1-18.

Home Connect. “Food and Textiles: Are You Already Scanning them with X-Spect?” http://www.home-connect.com/global/connected-household/x-spect [accessed Mar 19 2018].

Spectral Engines. “Industry 4.0 and How Smart Sensors Make the Difference”. https://www.spectralengines.com/industry-4-0-and-how-smart-sensors-make-the-difference/ [accessed Mar 19 2018].

P.J. Potts, M. West, editors. Portable X-ray Fluorescence Spectrometry, Capabilities for in Situ Analysis. Cambridge, UK: RSC Publishing, 2008.

Ron Jenkins. X-ray Fluorescence Spectrometry. 2nd ed. Chichester UK: Wiley-Interscience, 1999.

A. Erko. “X-ray Optics”. In: B. Beckhoff, B. Kanngiesser, editors. Handbook of Practical X-ray Fluorescence. Berlin; Heidelberg: Springer, 2006. Chap. 3, Pp. 85–198.

Thermo Fisher Scientific. “Fast, Accurate, Versatile XRF Analysis”. http://info3.thermofisher.com/lp=922 [accessed Aug 1 2018].

Olympus. “XRF Analyzers and XRD Analyzers”. https://www.olympus-ims.com/en/innovx-xrf-xrd/ [accessed Aug 1 2018].

Bruker. “Handheld/Portable XRF Spectrometry”. https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/handheld-xrf.html [accessed Aug 1 2018].

Spectro. “Spectro xSort”. https://www.spectro.com/products/xrf-spectrometer/xsort-xrf-gun-handheld-analyzer [accessed Aug 1 2018].

Hitachi. “Handheld XRF Analyzers: X-MET8000 Range”. https://hha.hitachi-hightech.com/en/product-range/products/handheld-xrf-libs-analysers/handheld-xrf-analysers [accessed Aug 1 2018].

S. Piorek. “Alloy Identification and Analysis with a Field-Portable XRF Analyzer”. In: P.J. Potts, M. West, editors. Portable X-ray Fluorescence Spectrometry, Capabilities for in Situ Analysis. Cambridge, UK: RSC Publishing, 2008. Chap. 6, Pp. 98–140.

Jacobsen G.A., 2006, Mat. Perform, 45, 18

American Petroleum Institute. Guidelines for Avoiding Sulfidation (Sulfidic) Corrosion in Oil Refineries. 1st ed. API RP 939-C. Washington, DC: American Petroleum Institute, 2009.

D. Cobb. “Study of the Effectiveness, Precision, and Reliability of X-ray Fluorescence Spectrometry and Other Alternative Methods for Measuring Lead in Paint”. 2009. https://www.cpsc.gov/content/study-effectiveness-precision-and-reliability-x-ray-fluorescence-spectrometry-and-other [accessed Oct 2 2018].

S. Piorek. “Coatings, Paint and Thin Film Deposits”. In: P.J. Potts, M. West, editors. Portable X-ray Fluorescence Spectrometry, Capabilities for in Situ Analysis. Cambridge, UK: RSC Publishing, 2008. Chap. 4, Pp. 56–82.

U.S. Consumer Product Safety Commission. “The Consumer Product Safety Improvement Act (CPSIA)”. 2008. H.R. 4040.

ASTM International. “F963–11 Standard Consumer Safety Specification for Toy Safety”. https://www.astm.org/Standards/F963.htm [accessed Oct 6 2018].

G. Liangquan. “Geochemical Prospecting”. In: P.J. Potts, M. West, editors. Portable X-ray Fluorescence Spectrometry, Capabilities for in Situ Analysis. Cambridge, UK: RSC Publishing, 2008. Chapt. 7, Pp. 141–173.

10.1016/j.apgeochem.2016.07.003

R.K. Glanzman, L.G. Closs. “Field Portable X-ray Fluorescence Geochemical Analysis–Its Contribution to Onsite Real-Time Project Evaluation”. Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration. 2007. Pp. 291–301.

10.4236/ijg.2012.31008

Thermo Fisher Scientific. “Underground Mining Analysis and Application”. https://www.thermofisher.com/us/en/home/industrial/spectroscopy-elemental-isotope-analysis/portable-analysis-material-id/portable-mining-exploration-solutions/portable-hard-rock-mining-analysis.html [accessed Oct 2 2018].

Thermo Fisher Scientific. “Niton DXL Precious Metals Analyzer”. https://www.thermofisher.com/order/catalog/product/dxlprecious [accessed Sep 24 2018].

R. Jenkins. “X-ray Fluorescence Spectrometry”. Chichester, UK: Wiley-Interscience, 1999. Pp. 6–7.

R.E. Meyers. “Handheld Laser-Induced Breakdown Spectroscopy Instruments and Their Applications”. In: R.A. Meyers, editor. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. Chichester, UK: John Wiley and Sons, 2015. Pp. 1-8.

10.1016/j.sab.2010.11.009

de Lucia F.C., 2009, Spectroscopy, 24, 32

R. Noll. “Bulk Analysis of Metal Alloys”. In: R. Noll, editor. Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications. Berlin; Heidelberg: Springer-Verlag, 2012. Chap. 13, Pp. 229–273.

D.A. Cremers, L.J. Radziemski. “LIBS Apparatus Fundamentals”. Handbook of Laser-Induced Breakdown Spectroscopy. Chichester, UK: John Wiley and Sons, 2006. Chap. 3, Pp. 69–122.

J.J. Zayhowski. Passively Q-Switched Picosecond Microlaser. European Patent EP0744089. Filed 1995. Issued 1998.

10.1364/OL.19.001427

10.1366/0003702041389427

10.1366/0003702055012528

10.1039/b419173k

10.1016/j.sab.2005.03.020

D.R. Day. Analyzer, Alignment, Sample Detection, Localization and Focusing Method and System. US Patent Application 2018/0172593. Filed 2018.

D.R. Day. Analyzer Sample Detection Method and System. US Patent Application 2018/0266962 A1. Filed 2018.

T. Pylkkanen, E. Raikkonen. Portable Analyzer Using Optical Emission Spectroscopy. US Patent 2018/0259393 A1. Filed 2018.

D. Day, B. Connors, M. Jennings, J. Egan, et al. “A Full Featured Handheld LIBS Analyzer with Early Results for Defense and Security”. In: M.A. Druy, R.A. Crocombe, D.P. Bannon, editors. Next-Generation Spectroscopic Technologies VIII. Proc. SPIE. 2015. 9482: 948206. doi: 10.1117/12.2177565.

SciAps. “SciAps LIBS Analyzer Models”. https://www.sciaps.com/libs-handheld-laser-analyzers/z-series/ [accessed Aug 1 2018].

Rigaku. “Handheld Laser Induced Breakdown (LIBS) Spectrometer”. https://www.rigaku.com/en/products/libs/katana [accessed Aug 1 2018].

TSI. “Metal Analyzers”. http://www.tsi.com/metal-analyzers/ [accessed Aug 1 2018].

Bruker. “Handheld Laser Induced Breakdown Spectroscopy (HH-LIBS)”. https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/libs.html [accessed Aug 1 2018].

B&W Tek (Newark, DE). “NanoLibs-Q for Quantitative Analysis”. http://bwtek.com/products/nanolibs-q/ [accessed Aug 1 2018].

Hitachi. “Handheld LIBS Analyzers: Vulcan Range”. https://hha.hitachi-hightech.com/en/product-range/products/handheld-xrf-libs-analysers/handheld-libs-analysers [accessed Aug 1 2018].

“Sale of Industrial Analysis Business to Hitachi High-Technologies”. 26 April 2017. https://www.oxinst.com/news/sale-of-industrial-analysis-business-to-hitachi-high-technologies/ [accessed Jul 6 2017].

SciAps. “LIBS: Handheld Laser Induced Breakdown Spectroscopy (HH LIBS)”. https://www.sciaps.com/libs-handheld-laser-analyzers/ and https://www.sciaps.com/libs-handheld-laser-analyzers/z-200-c-plus/ [accessed Sep 1 2018].

A.A. Markowicz. “Quantification and Correction Procedures”. In: P.J. Potts, M. West, editors. Portable X-ray Fluorescence Spectrometry, Capabilities for in Situ Analysis. Cambridge, UK: RSC Publishing, 2008. Chap. 2, Pp. 3–38.

Heuresis Corporation. “XRF Technology and Markets”. www.heuresistech.com [accessed Sep 1 2018].

Olympus. “XRF and XRD Analyzers: TERRA Portable XRD”. https://www.olympus-ims.com/en/xrf-xrd/mobile-benchtop-xrd/terra/#! [accessed Jul 2 2018].

10.1366/13-07386

10.1021/acs.analchem.7b04124

C.J.S. Pommier, L.K. Walton, T.D. Ridder, M.B. Denton. “Array Detectors for Raman Spectroscopy”. In: J.M. Chalmers, P.R. Griffiths, editors. Handbook of Vibrational Spectroscopy. Chichester, UK: John Wiley and Sons Ltd., 2002. Pp. 1-15.

K. Kaufmann. “CMOS Technology for Scientific Imaging”. Spectroscopy. 2010. http://www.spectroscopyonline.com/cmos-technology-scientific-imaging-0 [accessed Jun 26 2018].

T.H. Johnson. “Lead Salt Detectors and Arrays: PbS and PbSe”. In: W.L. Wolfe, editor. Infrared Detectors. Proc. SPIE. 1983. 0443: 60–94. doi: 10.1117/12.937940.

Infrared Materials. “PbS and PbSe Photoconductive Infrared Detectors: Welcome to Infrared Materials, Inc.”. http://infraredmaterials.com/ [accessed Jun 26 2018].

Hertzstück. “Welcome to Hertzstück: PbS detectors for Your Measurement System”. http://www.hertzstueck.de/ [accessed Jun 26 2018].

Linksquare. “LinkSquare NIR”. https://linksquare.io/products.html [accessed Jun 26 2018].

G.W. Chantry. “Long Wave Optics”. London, UK: Academic Press, 1984. Vol. I, P. 337.

P.R. Griffiths, J.A. de Haseth, J.D. Winefordner. Fourier Transform Infrared Spectrometry. In Signal-to-Noise Ratio. Hoboken, NJ: John Wiley and Sons, 2007. Chap. 7, Pp. 161–175.

R.L. McCreery. Raman Spectroscopy for Chemical Analysis. In Signal-to-Noise in Raman Spectroscopy. New York: Wiley-Interscience, 2000. Chap. 4, Pp. 52–67.

J. James. Spectrograph Design Fundamentals. In Geometrical Optics. Cambridge, UK: Cambridge University Press, 2007. Chap. 3, Pp. 21–24.

10.1086/143964

10.1364/JOSA.41.000252

T.R. Gilson, P.J. Hendra. Laser Raman Spectroscopy. In Experimental. London, UK: Wiley-Interscience, 1970. Chap. 2, Pp. 29–30; 37–39.

Herschel. “Chapter 2: The PACS Instrument. 2.4 Spectrometer”. http://herschel.esac.esa.int/Docs/PACS/html/ch02s04.html [accessed Oct 6 2018].

J.T. Meade, B.B. Behr, A.R. Hajian. “A New High-Resolution, High-Throughput Spectrometer: First Experience as Applied to Raman Spectroscopy”. In: M.A. Druy, R.A. Crocombe, editors. Next-Generation Spectroscopic Technologies V. Proc. SPIE. 2012. 8374: 83740V. doi: 10.1117/12.919062.

J.T. Meade, B.B. Behr, Y. Bismilla, A.T. Cenko, et al. “In-Depth Performance Analysis of the Hyperflux Spectrometer”. In: A. Mahadevan-Jansen, T. Vo-Dinh, W.S. Grundfest, editors. Advanced Biomedical and Clinical Diagnostic Systems XI. Proc. SPIE. 2013. 8572: 85720V. doi: 10.1117/12.2005285.

Tornado Spectral Systems. “HyperFlux Series”. http://tornado-spectral.com/solutions/hyperflux/ [accessed Sep 1 2018].

Hindsight Imaging. “Chemvur”. https://www.hindsight-imaging.com/projects/ [accessed Sep 1 2018].

10.1364/AO.49.00C200

Rasmussen T.P., 2014, Spectroscopy, 29, 32

10.1177/0003702816638271

10.1364/AO.41.001343

10.1364/AO.47.006371

10.1364/OE.18.006205

10.1364/AO.54.00F158

10.1366/11-06298

10.1177/0003702816631304

10.1364/OE.24.001829

Keit Spectrometers. “Fit for the Process Environment”. https://keit.co.uk/ [accessed Sep 24 2018].

Spectrolytic. “Measurement Solutions Using Mid-Infrared Spectroscopy”. https://spectrolytic.com/ [accessed Sep 24 2018].

P.R. Griffiths, J.A. de Haseth. Fourier Transform Infrared Spectrometry. 2nd ed. Hoboken, NJ: Wiley-Interscience, 2007.

S.P. Davis, M.C. Abrams, J.W. Brault. Fourier Transform Spectrometry. San Diego, CA: Academic Press, 2001.

J. James. Spectrograph Design Fundamentals. Cambridge, UK: Cambridge University Press, 2007.

E.W. Stark. “Near-Infrared Array Spectrometers”. In: J.M. Chalmers, P.R. Griffiths, editors. Handbook of Vibrational Spectroscopy. Chichester, UK: John Wiley and Sons Ltd., 2002. Pp. 1-30. doi: 10.1002/0470027320.s0305.

10.1177/0003702817720468

H. Owen. “Volume Phase Holographic Optical Elements”. In: J.M. Chalmers, P.R. Griffiths, editors. Handbook of Vibrational Spectroscopy. Chichester, UK: John Wiley and Sons Ltd., 2002. Pp. 1-8. doi: 10.1002/0470027320.s0402.

M. Gad-El-Hak, editor. The MEMS Handbook. 2nd ed. Boca Raton, FL: CRC Press, 2005.

M. Douglass. “DMD Reliability: A MEMS Success Story”. In: R. Ramesham, D.M. Tanner, editors. Reliability, Testing, and Characterization of MEMS/MOEMS II. Proc. SPIE. 2003. 4980. doi: 10.1117/12.478212.

H. Grüger, J. Knobbe, T. Pügner, P. Reinig, et al. “New Way to Realize Miniaturized Complex Optical Systems in High Volume”. In: W. Piyawattanametha, Y.H. Park, H. Zappe, editors. MOEMS and Miniaturized Systems XVII. Proc. SPIE. 2018. 10545: 1054505. doi: 10.1117/12.2289914.

T. Takafumi, K. Shibayama. Spectroscope and Method for Producing Spectroscope. US Patent 2018/0266883 A1. Filed 2018.

10.1109/TIM.2003.821490

10.1016/j.tsf.2003.10.055

J. Antoszewski, J. Dell, T. Shivakumar, M. Martyniuk, et al. “Towards MEMS Based Infrared Tunable Micro-Spectrometers”. In: E.C. Harvey, D. Abbott, V.K. Varadan, editors. Smart Structures, Devices, and Systems. Proc. SPIE. 2002. 4935: 148–155. doi: 10.1117/12.476343.

C. Solf, J. Mohr, U. Wallrabe. “Miniaturized LIGA Fourier Transform Spectrometer”. Sensors 2003, Proceedings of IEEE. 2003. 2: 773–776.

10.1109/MIM.2004.1304561

10.1364/OL.24.001705

10.1364/OL.29.001437

Jodor G., 2003, OSA Trends in Optics and Photonics, 84, 55

P. Krippner, T. Kuehner, J. Mohr, V. Saile. “Microspectrometer System for the Near-Infrared Wavelength Range Based on LIGA”. In: R.P. Mariella, editor. Micro- and Nanotechnology for Biomedical and Environmental Applications. Proc. SPIE. 2000. 3912: 141–149. doi: 10.1117/12.379571.

M. Kraft, A. Kenda, H. Schenk. “Hand-Held High-Speed Spectrometers Based on Micro-Electro-Mechanical Components”. Proceedings of the Symposium on Photonics Technologies for the 7th Framework Program. 2006. Pp. 183–186.

M. Kraft. “Compact MEMS High-Speed Fourier-Transform Spectrometer”. Presented at the 4th International Conference on Advanced Vibrational Spectroscopy ICAVS-4. Corfu, Greece; June 10-15, 2007. https://www.nace.org/uploadedFiles/Publications/MP_Magazine/MPLit.pdf.

T. Sander, A. Kenda, C. Drabe, H. Schenk, et al. “Miniaturized FTIR-Spectrometer Based on Optical MEMS Translatory Actuator”. In: D.L. Dickensheets, B.P. Gogoi, H. Schenk, editors. MOEMS and Miniaturized Systems VI. Proc. SPIE. 2007. 6466: 1–12. doi: 10.1117/12.697898.

A. Kenda, C. Drabe, H. Schenk, A. Frank, et al. “Application of a Micromachined Translatory Actuator to an Optical FTIR Spectrometer”. In: H. Urey, A. El-Fatatry, editors. MEMS, MOEMS, and Micromachining II. Proc. SPIE. 2006. 6186: 1–11. doi: 10.1117/12.662008.

Carinthian Tech Research AG. “Smart Sensors and Systems Integration”. www.ctr.at [accessed Oct 6 2018].

Carinthian Tech Research AG. “Pocket-Sized Laboratory”. http://www.ctr.at/en/rd-competence/rd-projects/eu-programme/memfis/ [accessed Mar 18 2018].

A. Kenda, T. Sandner, S. Lüttjohann, M. Kraft, et al. “Advances in Performance and Miniaturization of a FT-IR Spectrometer System Based on a Large Stroke MOEMS Piston Mirror”. In: H. Schenk, W. Piyawattanametha, W. Noell, editors. MOEMS and Miniaturized Systems XI. Proc. SPIE. 2012. 8252: 82520D. doi: 10.1117/12.908273.

E.R. Schildkraut, D. Reyes, D.J. Cavicchio, J.O. Jensen. “A MEMS Based Micro-Spectrometer for Toxic Vapor Detection and Identification”. Presented at the Scientific Conference on Chemical and Biological Defense Research. Hunt Valley, MD: November 15–17, 2004. http://www.blockeng.com/technology/microspectrometer.pdf [accessed Oct 6 2018].

10.1177/0003702816638295

I. Samir, Y.M. Sabry, M. Erfan, N. Badra, et al. “MEMS FTIR Spectrometer with Enhanced Resolution for Low Cost Gas Sensing in the NIR”. In: W. Piyawattanametha, Y.H. Park, H. Zappe, editors. MOEMS and Miniaturized Systems XVII. Proc. SPIE. 2018. 10545: 105450E. doi: 10.1117/12.2288996.

NeoSpectra. “Neospectra in a Nutshell”. http://www.neospectra.com/ [accessed May 1 2018].

Si-Ware Systems. “SWS62221 NeoSpectra–MEMS FT-IR Spectrometer”. http://www.si-ware.com/neospectra/ [accessed May 1 2018].

H. Grüger, A. Wolter, T. Schuster, H. Schenk, et al. “Performance and Applications of a Spectrometer with Micromachined Scanning Grating”. In: Y.S. Sidorin, A. Tervonen, editors. Integrated Optics: Devices, Materials, and Technologies VII. Proc. SPIE. 2003. 4987: 284–291. doi: 10.1117/12.478317.

H. Grüger, A. Wolter, T. Schuster, H. Schenk, et al. “Realization of a Spectrometer with Micromachined Scanning Grating”. In: B. Courtois, A.M. Khounsary, U.F.W. Behringer, D.G. Uttamchandani, editors. MEMS/MOEMS: Advances in Photonic Communications, Sensing, Metrology, Packaging and Assembly. Proc. SPIE. 2003. 4945: 46–53. doi: 10.1117/12.471993.

Hiperscan. “Near-Infrared Spectrometer SGS1900”. https://www.hiperscan.com/en/sgs1900 [accessed Oct 6 2018].

10.1177/0003702816638277

P. Reinig, H. Grüger, J. Knobbe, T. Pügner, et al. “Bringing NIR Spectrometers into Mobile Phones”. In: W. Piyawattanametha, Y.H. Park, H. Zappe, editors. MOEMS and Miniaturized Systems XVII. Proc. SPIE. 2018. 10545: 105450F. doi: 10.1117/12.2289931.

H. Urey, D.L. Dickenshets. “Display and Imaging Systems”. In: M.E. Motamedi, editor. MOEMS: Micro-Opto-Electro-Mechanical Systems. Bellingham, WA: SPIE Press, 2005. Chap. 8, Pp. 393–408.

D.K.K.M.B. Silva, D. Tripathi, H. Mao, J. Antoszewski, et al. “Recent Developments Towards Low-Cost MEMS Spectrometers”. In: M.A. Druy, R.A. Crocombe, editors. Next-Generation Spectroscopic Technologies VII. Proc. SPIE. 2014. 9101: 910108. doi: 10.1117/12.2053505.

J.E. Antila, U. Kantojärvi, J. Mäkynen, M. Tammi, et al. “Advanced MEMS Spectral Sensor for the NIR”. In: W. Piyawattanametha, Y.H. Park, editors. MOEMS and Miniaturized Systems XIV. Proc. SPIE. 2015. 9375: 93750F. doi: 10.1117/12.

M. Ebermann, N. Neumann, K. Hiller, M. Seifert, et al. “Tunable MEMS Fabry–Pérot Filters for Infrared Microspectrometers: A Review”. In: W. Piyawattanametha, Y.H. Park, editors. MOEMS and Miniaturized Systems XV. Proc. SPIE. 2016. 9760: 97600H. doi: 10.1117/12.2209288.

J. Antila, M. Tuohiniemi, A. Rissanen, U. Kantojärvi, et al. “MEMS- and MOEMS-Based Near-Infrared Spectrometers”. In: R.A. Meyers, editor. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation., Chichester, UK: John Wiley and Sons, 2018. Pp. 1-36.

S. Agaian, H. Sarukhanyan, K. Egiazarian, J. Astola. Hadamard Transforms. Bellingham, WA: SPIE Press Monograph, 2011. PM207.

M. Harwit, J.N. Sloane. Hadamard Transform Optics. New York, NY: Academic Press, 1979.

M. Harwit. “Hadamard Transform Analytical Systems”. In: P.R. Griffiths, editor. Transform Techniques in Chemistry. New York, NY: Plenum Press, 1978. Chap. 7, Pp. 173–198.

J.A. Decker Jr. “Hadamard Transform Spectroscopy”. In: George A. Vanesse, editor. Spectrometric Techniques. New York, NY: Academic Press, 1977. Vol. 1, Chap. 5, Pp. 190–228.

Treado P.J., 1989, Anal. Chem, 61, 723A

R.M. Hammaker, R.A. Deverse, D.J. Asunskis, W.G. Fateley. “Hadamard Transform Near-Infrared Spectrometers”. In: J.M. Chalmers, P.R. Griffiths, editors. Handbook of Vibrational Spectroscopy. Chichester, UK: John Wiley and Sons Ltd., 2002. Pp. 1-8.

S. Johnston. Fourier Transform Infrared: A Constantly Evolving Technology. Chichester, UK: Ellis Horwood, 1991.

R.J. Bell. Introductory Fourier Transform Spectroscopy. In Historical Sketch and Crucial Ideas. New York, NY: Academic Press, 1972. Chap. 2, Pp. 19–25.

Y. Geller, M. Ramani. “MEMS Based Digital Transform Spectrometers”. In: P. Mascher, A.P. Knights, J.C. Cartledge, D.V. Plant, editors. Photonic Applications in Devices and Communication Systems. Proc. SPIE. 2005. 5970: 316–312. doi: 10.1117/12.627942.

Thermo Fisher Scientific. “microPHAZIR PC Analyzer for Plastic/Polymer Identification”. https://www.thermofisher.com/order/catalog/product/MICROPHAZIRPC?SID=srch-srp-MICROPHAZIRPC [accessed Jan 1 2018].

G.B. Hocker, D. Younger, M. Butler, M. Sinclair, et al. “The Polychromator: A Programmable MEMS Diffraction Grating for Synthetic Spectra”. Proc. Solid-State Sensor Acuator Workshop. Hilton Head, SC: June 4–8, 2000. Pp. 89–91.

S.D. Senturia, D.R. Day, M.A. Butler, M.C. Smith. “Programmable Diffraction Gratings and Their Uses in Displays, Spectroscopy and Communications”. Journal of Micro/Nanolithography, MEMS, and MOEMS. 2005. 4(4): 041401.

M.A. Butler, S. Senturia, Y. Geller. “Tech Note: Diffractive MEMS in Spectroscopy”. Spectroscopy 2005. 20(4). http://www.spectroscopyonline.com/tech-note-diffractive-mems-spectroscopy [accessed Sep 1 2018].

10.1364/AO.36.003342

U.S. National Aeronautics and Space Administration (NASA). “LCROSS: Lunar CRater Observation and Sensing Satellite”. https://www.nasa.gov/mission_pages/LCROSS/main/index.html [accessed Oct 6 2018].

Texas Instruments. “TI DLP Technology”. http://www.dlp.com/tech/about_us.aspx [accessed May 2 2018].

H. Urey, D.L. Dickenshets. “Display and Imaging Systems”. In: M.E. Motamedi, editor. MOEMS: Micro-Opto-Electro-Mechanical Systems. Bellingham, WA: SPIE Press, 2005. Chap. 8, Pp. 369–452.

A.P. Malshe, J.P. O’Connor. “MEMS and MOEMS Packaging”. In: M.E. Motamedi, editor. MOEMS: Micro-Opto-Electro-Mechanical Systems. Bellingham, WA: SPIE Press, 2005. Chap. 11, Pp. 515–544.

P. Nelson. “DLP Technology for Spectroscopy”. http://www.ti.com/lit/wp/dlpa048a/dlpa048a.pdf [accessed Jul 27 2018].

M.R. Douglass, B.L. Lee, editors. Emerging Digital Micromirror Device Based Systems and Applications IX. Proc. SPIE. 2017. 10546.

Texas Instruments. “DLP Nirscan Evaluation Module”. http://www.ti.com/tool/dlpnirscanevm [accessed Jul 27 2018].

Texas Instruments. “Near-Infrared (NIR): Tools and Software”. http://www.ti.com/dlp-chip/advanced-light-control/near-infrared/tools-software.html [accessed Jul 27 2018].

Inno-Spectra Corporation. http://www.inno-spectra.com/en/product [accessed Jul 27 2018].

Sphereoptics. “LuxFlux NIR-S-G1”. http://sphereoptics.de/en/product/nir-s-g1/ [accessed Sep 1 2018].

Sagitto. “A Lab in the Hand”. https://cloud.sagitto.com/ [accessed Jul 27 2018].

Allied Scientific. “NIRvascan Smart Near Infrared Spectrometer Reflective Model G1”. https://alliedscientificpro.com/shop/product/g1-nirvascan-smart-near-infrared-spectrometer-reflective-model-g1-21390 [accessed Jul 27 2018].

Tellspec. “Building Food Trust: Real-Time, Portable Analysis for Food Safety”. http://tellspec.com/ [accessed Jul 27 2018].

Tellspec. “Tellspec Enterprise Scanner”. http://tellspec.com/order/ [accessed Jul 27 2018].

10.1366/0003702874447383

10.1366/0003702874448454

10.1366/0003702894203093

M. Fuller, P. Potuluri, M. Sullivan. “Multimodal Multiplex Raman Spectroscopy”. Spectroscopy. 2006. http://www.spectroscopyonline.com/multimodal-multiplex-raman-spectroscopy [accessed Sep 1 2018].

10.1364/AO.45.002965

10.1364/AO.46.004932

10.1364/OPN.17.12.000042

G.W. Chantry. Long Wave Optics. In The Emission and Absorption of Infrared radiation. London, UK: Academic Press, 1984. Pp. 62–74.

B.E.A. Saleh, M.C. Teich. Fundamentals of Photonics. In Photonic-Crystal Optics; GuidedWave Optics. Hoboken, NJ: Wiley-Interscience, 2007. Chap. 7, Pp. 246–257; Chap. 8, Pp. 365–402.

B.E.A. Saleh, M.C. Teich. Fundamentals of Photonics. In Photonic-Crystal Optics; GuidedWave Optics. Hoboken, NJ: Wiley-Interscience, 2007. Chap. 8, Pp. 365-402.

J.M. Vaughn. The Fabry–Perot Interferometer: History, Theory, Practice, and Applications. Bristol, PA: Adam Hilger, 1989.

G. Hernandez. Fabry–Perot Interferometers. Cambridge, UK: Cambridge University Press, 1986.

J.F. Mulligan. “Who Were Fabry and Pérot?” Am. J. Phys. 1998. 66(9): 797–802.

Spectral Engines. “Products”. https://www.spectralengines.com/products/ [accessed May 2 2018].

Infratec. “Tunable Detectors: Advantages of Fabry–Perot Interferometer (FPI Detectors)”. https://www.infratec-infrared.com/sensor-division/fpi-detectors/ [accessed Jul 2 2018].

A. Lee Smith. Applied Infrared Spectroscopy. In Sampling Techniques. New York, NY: Wiley-Interscience, 1979. Chap. 4, Pp. 117–118.

J.W. Medernach. “Infrared Characterization of Device-Quality Silicon”. In: J.M. Chalmers, P.R. Griffiths, editors. Handbook of Vibrational Spectroscopy. Chichester, UK: John Wiley and Sons Ltd., 2002. Vol. 4.

S.F. Johnston. Fourier Transform Infrared: A Constantly Evolving Technology. In Competing Technologies. Chichester, UK: Ellis Horwood. 1991. Pp. 69–70; 95–96.

H.A. Macleod. Thin-Film Optical Filters. Boca Raton, FL: CRC Press, 2018.

J.D. Rancourt. Optical Thin Films: User Handbook. New York: McGraw-Hill, 1987.

B.R. Wiesent, D.G. Dorigo, A.W. Koch. “Limits of IR-Spectrometers Based on Linear Variable Filters and Detector Arrays”. In: M.T. Postek, editor. Instrumentation, Metrology, and Standards for Nanomanufacturing IV. Proc. SPIE. 2010. 7767: 77670L. doi: 10.1117/12.860532.

For instance, Delta Optical Thin Film. For example, “Optical Filters for OEM Customers”. https://www.deltaopticalthinfilm.com/ [accessed May 2 2018].

Spectro Scientific. https://www.spectrosci.com/ [accessed May 2 2018].

Paul Wilks. “Infrared Filtometers”. In: J.M. Chalmers, P.R. Griffiths, editors. Handbook of Vibrational Spectroscopy. Chichester, UK: John Wiley and Sons Ltd., 2002. Vol. 1.

Ocean Optics. “Ocean MZ5 ATR-MIR Spectrometer”. https://oceanoptics.com/product/mz5-atr-mir-spectrometer/ [accessed Jul 18 2018].

Pyreos. “Linear Array Components”. http://www.pyreos.com/linear-array-components [accessed Jul 18 2018].

Viavi OSP. “MicroNIR Spectrometers”. https://www.viavisolutions.com/en-us/osp/products/micronir-spectrometers [accessed Jul 18 2018].

N.A. O’Brien, C.A. Hulse, D.M. Friedrich, F.J. Van Milligen, et al. “Miniature Near-Infrared (NIR) Spectrometer Engine for Handheld Applications”. In: M.A. Druy, R.A. Crocombe, editors. Next-Generation Spectroscopic Technologies V. Proc. SPIE. 2012. 8374: 837404. doi: 10.1117/12.917983.

D.M. Friedrich, C.A. Hulse, M. Von Gunten, E.P. Williamson, et al. “Miniature Near-Infrared Spectrometer for Point-of-Use Chemical Analysis”. In: Y.G. Soskind, C. Olson, editors. Photonic Instrumentation Engineering. Proc. SPIE. 2014. 8992: 899203. doi: 10.1117/12.2040669.

10.1177/0003702816638281

10.1177/0003702816638284

10.1177/0003702818777260

B.E. Bayer. Color Imaging Array. US Patent 3971065A. Filed 1975. Issued 1976.

S. Saxe, L. Sun, V. Smith, D. Meysing, et al. “Advances in Miniaturized Spectral Sensors”. In: M.A. Druy, R.A. Crocombe, S.M. Barnett, L.T.M. Profeta, et al., editors. Next-Generation Spectroscopic Technologies XI. Proc. SPIE. 2018. 10657: 106570B. doi: 10.1117/12.2304019.

IMEC. “Hyperspectral Imaging”. https://www.imec-int.com/en/hyperspectral-imaging [accessed Jul 18 2018].

Consumer Physics. “It’s Sci-Fi at Your Fingertips: Scan Physical Objects and Uncover a World the Eye Cannot See”. https://www.consumerphysics.com/scio-for-consumers/ [accessed Jul 18 2018].

Analog Devices. “ADI and Consumer Physics IoT Platform Enables Material Analysis of Food, Drugs and More for Quality, Content and Composition”. http://investor.analog.com/news-releases/news-release-details/adi-and-consumer-physics-iot-platform-enables-material-analysis?releaseid=955544 [accessed Jul 18 2018].

US Patent Application Filed 2018. 2018/0172510 A1.

US Patent Application Filed 2018. 2018/0180481.

Sparkfun. “SCiO Pocket Molecular Scanner Teardown”. https://learn.sparkfun.com/tutorials/scio-pocket-molecular-scanner-teardown- [accessed Jul 18 2018].

CIRTEMO. “The CIRTEMO Multivariate Optical Element Platform”. http://www.cirtemo.com/index.html [accessed Jul 27 2018].

10.1021/ac970791w

R. Priore, J. Dougherty, O. Cohen, L. Bikov, et al. “Design of a Miniature SWIR Hyperspectral Snapshot Imager Utilizing Multivariate Optical Elements”. In: K.L. Lewis, R.C. Hollins, editors. Emerging Imaging and Sensing Technologies. Proc. SPIE. 2016. 9992: 999205. doi: 10.1117/12.2254369.

E.F. Schubert. Light Emitting Diodes. Cambridge, UK: Cambridge University Press, 2003.

Roithner Lasertechnik. www.roithner-laser.com [accessed Jul 27 2018].

10.2116/analsci.16.1091

A.A. Mencaglia, A.G. Mignani. “Optical Fiber Instrumentation for Online Absorption and Reflection Spectroscopy”. In: B. Culshaw, editor. European Workshop on Smart Structures in Engineering and Technology. Proc. SPIE. 2003. 4763: 248–251. doi: 10.1117/12.508795.

OSRAM Licht AG. “OSLON Black Flat, SFH 4735”. https://www.osram.com/os/ecat/oslon%c2%ae%20black%20flat%20sfh%204735/com/en/class_pim_web_catalog_103489/global/prd_pim_device_2219896/ [accessed Jul 27 2018].

T.C. Rosenthal. “Infrared-Emitting Diodes for Near-Infrared Spectrometry”. In: J.M. Chalmers, P.R. Griffiths, editors. Handbook of Vibrational Spectroscopy. Chichester, UK: John Wiley and Sons Ltd., 2002. Pp. 1-5.

Intoxilyzer. “Intoxilyzer 800”. https://www.alcoholtest.com/ [accessed Jul 31 2018].

Garmin International. “Fēnix 5x Plus”. https://buy.garmin.com/en-us/us/p/603229 [accessed Jul 31 2018].

M. Sawh. “Sensors Explored: Pulse Oximeter”. https://www.wareable.com/wearable-tech/pulse-oximeter-explained-fitbit-garmin-wearables-340 [accessed Jul 31 2018].

R.A. Crocombe, D.C. Flanders, W. Atia. “Micro-Optical Instrumentation for Process Spectroscopy”. In: L.A. Smith, D. Sobek, editors. Lab-on-a-Chip: Platforms, Devices, and Applications. Proc. SPIE. 2004. 5591: 11–25. doi: 10.1117/12.578107.

Axsun Technologies. “Process Control and Analysis”. http://www.axsun.com/industrial-process-control [accessed Jul 17 2018].

Parris J., 2005, Spectroscopy, 20, 34

O. Yadid-Pecht, Y. Dattner. “Broadband SLED-Based Light Source (Best-SLED™) and Spectrometer”. S. He, E.H. Lee, L.A. Eldada, editors. Smart Photonic and Optoelectronic Integrated Circuits XVII. Proc. SPIE. 2016. 9751: 97510I. doi: 10.1117/12.2213581.

Luxmux. “Best-SLED”. https://www.luxmux.com/bestsled [accessed Jul 17 2018].

10.1364/OL.5.000015

10.1364/AO.31.000718

M.B. Frish, R.T. Wainner, M.C. Laderer, K.R. Parameswaran, et al. “Precision and Accuracy of Miniature Tunable Diode Laser Absorption Spectrometers”. In: M.A. Druy, R.A. Crocombe, editors. Next-Generation Spectroscopic Techniques IV. Proc. SPIE. 2011. 8032: 803209. doi: 10.1117/12.884526.

Heath Consultants. “Optical Methand Detector (OMD)”. https://heathus.com/wp-content/uploads/OMD-Manual-Rev-E.pdf [accessed Jul 18 2018].

R.T. Wainner, N.F. Aubut, M.C. Laderer, M.B. Frish. “Scanning, Standoff TDLAS Leak Imaging and Quantification”. In: M.A. Druy, R.A. Crocombe, S.M. Barnett, L.T. Profeta, editors. Next-Generation Spectroscopic Technologies X. Proc. SPIE. 2017. 10210: 1021006. doi: 10.1117/12.2264799.

10.1007/s40135-018-0158-3

Axsun Technologies. “Axsun Technologies Reaches Shipment Milestone of 15,000 Swept Lasers for Optical Coherence Tomography (OCT) Imaging”. http://www.axsun.com/new-blog/2018/6/27/axsun-technologies-reaches-shipment-milestone-of-15000-swept-lasers-for-optical-coherence-tomography-oct-imaging [accessed Jun 27 2018].

H.R. Schlossberg, P.L. Kelley. “Infrared Spectroscopy Using Tunable Lasers”. In: G.A. Vanesse, editor. Spectrometric Techniques. New York, NY: Academic Press, 1981. Vol. 2, Chap. 4, Pp. 161–238.

10.1063/1.1145951

10.1126/science.264.5158.553

10.1063/1.119208

B.E. A Saleh, M.C. Teich. Fundamentals of Photonics. In Semiconductor Photon Sources. Hoboken, NJ: Wiley-Interscience, 2007. Chap. 17, Pp. 680–747.

J. Faist. “Continuous Wave, Room-Temperature Quantum Cascade Lasers”. Opt. Photonics News. 17(5): 32–36.

Ouelette J., 2001, Indust. Phys, 7, 8

I. Howieson, E. Normand, M.T. McCulloch. “Quantum-Cascade Lasers Smell Success”. Laser Focus World. 2005. https://www.laserfocusworld.com/articles/print/volume-41/issue-3/optoelectronics-world/quantum-cascade-lasers-smell-success.html [accessed Jul 17 2018].

Alpes Lasers. http://www.alpeslasers.ch/ [accessed Jul 19 2018].

Cascade Technologies. “About Quantum Cascade Laser Analyzers”. http://www.emerson.com/en-us/automation/measurement-instrumentation/gas-analysis/about-quantum-cascade-laser-analyzers [accessed Jul 2 2018].

Daylight Solutions. “Revolutionizing Mid-IR Systems with Advanced Laser Technology”. https://www.daylightsolutions.com/ [accessed Jul 19 2018].

Pranalytica. “Quantum Cascade Lasers”. http://www.pranalytica.com/core-technologies/quantum-cascade-lasers.php [accessed Jul 17 2018].

10.1117/1.3505844

10.1063/1.2816909

10.1364/OE.23.002121

10.1007/s00340-018-6977-y

10.1364/AO.44.002887

10.1016/j.optcom.2003.07.041

M.J. Weida, D. Arnone, T. Day. “Tunable QC Laser Opens Up Mid-IR Sensing Applications”. Laser Focus World. 2006. https://www.laserfocusworld.com/articles/print/volume-42/issue-7/optoelectronics-world/tunable-qc-laser-opens-up-mid-ir-sensing-applications.html [accessed Jul 19 2018].

G. Duxbury, N. Langford. “Quantum Cascade Lasers Bring Sensitivity and Speed to Infrared Gas Sensing”. Spectroscopy Europe. 2006. 18(5): 18–22. https://www.spectroscopyeurope.com/article/quantum-cascade-lasers-bring-sensitivity-and-speed-infrared-gas-sensing [accessed Jul 19 2018].

10.1364/OE.24.00A528

I. Vurgaftman, W.W. Bewley, C.D. Merritt, C.L. Canedy, et al. “Sensitive Chemical Detection with Distributed Feedback Interband Cascade Lasers”. In: R.A. Meyers, editor. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation., Chichester, UK: John Wiley and Sons, 2018. Pp. 1-19.

10.1117/1.OE.57.1.011002

Daylight Solutions. “Spero Chemical Imaging Microscope”. https://www.daylightsolutions.com/product/spero/ [accessed Jun 26 2018].

B. Bird, J. Rowlette. “High Definition Infrared Chemical Imaging of Colorectal Tissue Using a Spero QCL Microscope”. Analyst. 2017. 142(8): 1381–1386.

Redshift Biosystems. https://redshiftbio.com/ [accessed Jun 26 2018].

M. Wagner, C.M. Marshall, D. Kuehl, J. Guasto. Motion Modulation Fluidic Analyzer System. US Patent 9377400 B2. Filed 2016.

K.J. Ewing, K.J. Major, J.S. Sanghera, R.R. Gattass, et al. “Enabling Standoff Detection of Hazardous Materials Using a Fiber Optic Coupled Quantum Cascade Infrared Laser System”. In: J.A. Guicheteau, A.W. Fountain, C.R. Howle, editors. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIX. Proc. SPIE. 2018. 10629: 106290A.

S. Hugger, F. Fuchs, J. Jarvis, M. Kinzer, et al. “Broadband-Tunable External-Cavity Quantum Cascade Lasers for the Spectroscopic Detection of Hazardous Substances”. In: M. Razeghi, editor. Quantum Sensing and Nanophotonic Devices X. Proc. SPIE. 2013. 8631: 86312I. doi: 10.1117/12.2008880.

C. Carson, J. MacArthur, M. Warden, D. Stothard, et al. “Towards a Compact, Portable, Handheld Device for Contactless Real-Time Standoff Detection of Hazardous Substances”. In: B.F. Andresen, G.F. Fulop, C.M. Hanson, J.L. Miller, et al., editors. Proc. SPIE. 2018. 10624: 106240F. doi: 10.1117/12.2305711.

Block Engineering. http://www.blockeng.com/ [accessed Apr 30 2018].

P. Kotidis, E.R. Deutsch, A. Goyal. “Standoff Detection of Chemical and Biological Threats Using Miniature Widely Tunable QCLs”. In: T. George, A.K. Dutta, M.S. Islam, editors. Micro- and Nanotechnology Sensors, Systems, and Applications VII. Proc. SPIE. 2015. 9467: 94672S. doi: 10.1117/12.2178169.

D.B. Kelley, D. Wood, A.K. Goyal, P. Kotidis. “High-Speed and Large-Area Scanning of Surfaces for Trace Chemicals Using Wavelength-Tunable Quantum Cascade Lasers”. In: J.A. Guicheteau, A.W. Fountain, C.R. Howle, editors. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIX. Proc. SPIE. 2018. 10629: 1062909. doi: 10.1117/12.2304387.

D. Wood, D.B. Kelley, A.K. Goyal, P. Kotidis. “Mid-Infrared Reflection Signatures for Trace Chemicals on Surfaces”. In: M. Velez-Reyes, D.W. Messinger, editors. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXIII. Proc. SPIE. 2018. 10629: 1062915. doi: 10.1117/12.2262548.

Pendar Technologies. http://www.pendartechnologies.com/ [accessed Apr 30 2018].

10.1364/OE.26.012159

10.1109/JQE.2009.2013175

10.1007/s00340-018-7030-x

R.R. Alfano. The Supercontinuum Laser Source: The Ultimate White Light. New York, NY: Springer, 2016.

M.N. Islam. “Infrared Super-Continuum Light Sources and Their Applications”. In: Y. Feng, editor. Raman Fiber Lasers, Springer Series in Optical Sciences. Berlin; Heidelberg: Springer International Publishing, 2017. Vol. 207, Chap. 4, Pp. 117–203.

10.1007/s00340-007-2812-6

10.1364/OL.43.000296

P.M. Moselund, L. Huot, C.D. Brooks. “All-Fiber Mid-IR Supercontinuum: A Powerful New Tool for IR-Spectroscopy”. In: R.R. Alfano, S.G. Demos, editors. Optical Biopsy XIV: Toward Real-Time Spectroscopic Imaging and Diagnosis. Proc. SPIE. 2016. 9703: 97030B. doi: 10.1117/12.2213129.

J. Kilgus, P. Müller, P.M. Moselund, M. Brandstetter. “Application of Supercontinuum Radiation for Mid-Infrared Spectroscopy”. In: F. Berghmans, A.G. Mignani, editors. Proc. SPIE. 2016. 9899: 98990K. doi: 10.1117/12.2225886.

10.1366/000370209788346904

10.1177/0003702816652361

10.1364/OE.26.012169

10.1364/OPTICA.5.000378

10.1177/0003702817746696

10.1364/OME.8.001305

P.M. Moselund, P. Bowen, L. Huot, J. Carthy, et al. “Compact Low-Power Mid-IR Supercontinuum for Sensing Applications”. In: M. Razeghi, G.J. Brown, J.S. Lewis, G. Leo, editors. Quantum Sensing and Nano Electronics and Photonics XV. Proc. SPIE. 2018. 10540: 105402I. doi: 10.1117/12.2290447.

10.1366/0003702981944283

OPOTEK. http://www.opotek.com/ [accessed Jul 18 2018].

E. Margalith, L.K. Nguyen, G. Klunder. “Near Infrared Spectral Imaging of Explosives Using a Tunable Laser Source”. In: M.A. Druy, C.D. Brown, R.A. Crocombe, editors. Next-Generation Spectroscopic Techniques III. Proc. SPIE. 2010. 7680: 76800H. doi: 10.1117/12.852659.

Ma E., 2018, Spectroscopy, 33, 46

10.1002/opph.201190028

10.1109/LPT.2010.2050058

10.1002/jbio.201800015

10.1147/rd.145.0509

J.I. Trisnadi. “Speckle Contrast Reduction in Laser Projection Displays”. In: M.H. Wu, editor. Projection Displays VIII. Proc. SPIE. 2002. 4657. doi: 10.1117/12.463781.

G. Häusler, F. Dötzer, K. Mantel. “Instantaneous Speckle Reduction? Yes, But There is No Free Lunch!” In: L.R. Jaroszewicz, M. Kujawinska, M. Jozwik, editors. Speckle 2018: VII International Conference on Speckle Metrology. Proc. SPIE. 2018. 10834: 108340B. doi: 10.1117/12.2317925.

C. Hoke, Y. Beregovski, A. Ghetler, Y. Han, et al. “Advances in Laser Direct IR Imaging”. Paper presented at: SciX 2016. Hyatt Regency Minneapolis, Minneapolis, MN; September 18–26, 2016.

Agilent Technologies. https://www.agilent.com/en/promotions/ldir-imaging-contactus, [accessed Jul 17 2018].

10.1366/0003702934066776

M.M. Carrabba, D. Rauh. Apparatus for Measuring Raman Spectra Over Optical Fibers. US Patent 5112127. Filed 1989. Issued 1992.

10.1366/0003702894203048

10.1021/ac00198a012

10.1366/0003702934066145

M.J. Pelletier. “Raman Instrumentation”. In: M.J. Pelletier, editor. Analytical Applications of Raman Spectroscopy. Oxford, UK: Blackwell Science, 1999. Chap. 2, Pp. 53–105.

R.L. McCreery. Raman Spectroscopy for Chemical Analysis. New York, NY: John Wiley and Sons, 2000.

F. Adar. “Evolution and Revolution of Raman Instrumentation–Application of Available Technologies to Spectroscopy and Microscopy”. In: I. R. Lewis, H.G.M. Edwards, editors. Handbook of Raman Spectroscopy. New York, NY: Marcel Dekker, 2001. Chap. 2, Pp. 11–40.

M.J. Pelletier. “Raman Monochromators and Polychromators”. In: J.M. Chalmers, P.R. Griffiths, editors. Handbook of Vibrational Spectroscopy. Chichester, UK: John Wiley and Sons Ltd., 2002. Pp. 1-15.

H. Owen. “Volume Phase Holographic Optical Elements”. In: J.M. Chalmers, P.R. Griffiths, editors. Handbook of Vibrational Spectroscopy. Chichester, UK: John Wiley and Sons Ltd., 2002. Pp. 1-8.

M.W. Pan, R.E. Brenner, L.M. Smith. “Continuous Lasers for Raman Spectroscopy”. In: J.M. Chalmers, P.R. Griffiths, editors. Handbook of Vibrational Spectroscopy. Chichester, UK: John Wiley and Sons Ltd., 2002. Pp. 1-17.

B.A. Eckenrode, E.G. Bartick, S.D. Harvey, M.E. Vucelick, et al. “Portable Raman Spectroscopy Systems for Field Analysis”. Forensic Sci. Commun. 2001. 3(4).

10.1021/ac901951b

M. Hargreaves, R. Green, W. Jalenak, C. Brown, et al. “Handheld Raman and FTIR Spectrometers”. In: J.M. Chalmers, H.G.M. Edwards, M.D. Hargreaves, editors. Infrared and Raman Spectroscopy in Forensic Science. Chichester, UK: John Wiley and Sons, 2011. Chap. 5.3, Pp. 274-287.

Harris C.M., 2002, Anal. Chem, 74, 433A, 10.1021/ac0220878

Harris C.M., 2003, Anal. Chem, 75, 75A, 10.1021/ac031242v

10.1021/ac0719094

10.1117/1.JBO.23.7.071210

M.D. Hargreaves. “Handheld Raman Spectrometers and Their Applications”. In: R.A. Meyers, editor. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. Chichester, UK: John Wiley and Sons, 2014. Pp. 1-16.

Wasatch Photonics. https://wasatchphotonics.com/ [accessed Jul 18 2018].

Rigaku. “Resq CQL”. https://www.rigaku.com/en/cql [accessed Sep 23 2018].

M. MacDougal, J. Geske, C. Wang, D. Follman. “Low-Light-Level InGaAs Focal Plane Arrays with and Without Illumination”. In: B.F. Andresen, G.F. Fulop, P.R. Norton, editors. Infrared Technology and Applications XXXIII. Proc. SPIE. 2010. 7660: 76600K. doi: 10.1117/12.720522.

Biotools. “RAMtest”. http://www.btools.com/ [accessed Jun 26 2018].

Anton Paar. “Cora 5X00 Paman Spectrometers”. https://www.anton-paar.com/us-en/products/details/cora-5x00-raman-spectrometers/ [accessed Sep 24 2018].

10.1117/1.OE.55.7.074103

C. Brouillette, W. Smith, M. Donahue, H. Huang, et al. “Portable Raman Spectroscopy Using Retina-Safe (1550 nm) Laser Excitation”. In: M.A. Druy, R.A. Crocombe, editors. Next-Generation Spectroscopic Technologies V. Proc. SPIE. 2012. 8374: 83740Q. doi: 10.1117/12.920853.

10.1366/0003702924125122

10.1366/000370202760171491

Bruker. “BRAVO”. https://www.bruker.com/products/infrared-near-infrared-and-raman-spectroscopy/raman/bravo/technical-details.html [accessed Jan 1 2018].

Innovative Photonic Solutions. http://www.ipslasers.com/index.html [accessed Jul 18 2018].

M. Maiwald, B. Sumpf, G. Tränkle. “Rapid and Adjustable Shifted Excitation Raman Difference Spectroscopy Using a Dual-Wavelength Diode Laser at 785 nm”. J. Raman Spectrosc. 2018. doi: 10.1002/jrs.5456.

10.1021/ac60338a012

10.1021/ac50007a033

10.1366/0003702991945993

10.1366/000370207781269873

10.1364/OL.36.003672

10.1364/OE.21.031632

Timegate Instruments. https://www.timegate.com/ [accessed Jul 18 2018].

10.1364/OE.22.018736

10.1364/AO.55.000739

10.1126/science.6740313

Asher S.A., 1993, Anal. Chem, 65, 59A

W. Hug, R. Bhartia, K. Sijapati, L. Beegle, et al. “Improved Sensing Using Simultaneous Deep-UV Raman and Fluorescence Detection”. In: A.W. Fountain, editor. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XV. Proc. SPIE. 2014. 9073: 90730I. doi: 10.1117/12.2053069.

10.1366/000370210791114194

S.D. Christesen, A.W. Fountain III, E.D. Emmons, J.A. Guicheteau. “Raman Detection of Explosives”. In: P.M. Pellegrino, E.L. Holthoff, M.E. Farrell, editors. Laser-Based Optical Detection of Explosives. Boca Raton, FL: CRC Press, 2015. Pp. 99-122.

W.H. Hug, R. Bhartia, A. Tsapin, A.L. Lane, et al. “Status of Miniature Integrated UV Resonance Fluorescence and Raman Sensors for Detection and Identification of Biochemical Warfare Agents”. In: A.J. Sedlacek, S.D. Christesen, R.J. Combs, T. Vo-Dinh, editors. Chemical and Biological Sensors for Industrial and Environmental Security. Proc. SPIE. 2005. 5994: 5884J. doi: 10.1117/12.628923.

S.D. Christesen, J.M. Lochner, A.M. Hyre, D.K. Emge. “UV Raman Spectra and Cross Sections of Chemical Agents”. In: P.J. Gardner, A.W. Fountain, editors. Chemical and Biological Sensing VII. Proc. SPIE. 2006. 6218: 621809. doi: 10.1117/12.669841.

M.A. Hamilton, S. Piorek, R.A. Crocombe. Sample Analysis. US Patent 8982338. Filed 2012. Issued 2015.

M. Gaft, R. Reisfeld, G. Panczer. Luminescence Spectroscopy of Minerals and Materials. Berlin Heidelberg: Springer-Verlag, 2005.

10.1366/0003702001950418

W.F. Hug, R.D. Reid, R. Bhartia, A.L. Lane. “Performance Status of a Small Robot-Mounted or Hand-Held, Solar-Blind, Standoff Chemical, Biological, and Explosives (CBE) Sensor”. In: A.W. Fountain, P.J. Gardner, editors. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing X. Proc. SPIE. 2009. 7304: 73040Z. doi: 10.1117/12.817881.

10.1177/0003702816638285

Photon Systems. “Standoff Detection of CBE”. https://photonsystems.com/applications/security-cbe/standoff-detectors-for-cbe/ [accessed Jul 18 2018].

G. Robertson, W. Miller, G. Malcolm, G. Maker, et al. “Stand-Off Spectroscopy for the Detection of Chemical Warfare Agents”. In: C. Lewis, D. Burgess, editors. Optics and Photonics for Counterterrorism, Crime Fighting, and Defence VIII. Proc. SPIE. 2012. 8546: 85460X. doi: 10.1117/12.974574.

10.1016/0009-2614(74)85388-1

10.1016/S0022-0728(77)80224-6

10.1021/ac053456d

10.1366/0003702053641450

Cobalt/Agilent. “Spatially Offset Raman Spectroscopy (SORS)”. https://www.agilent.com/en/technology/spatially-offset-raman-spectroscopy [accessed Jul 18 2018].

Agilent. “Handheld Chemical Identification: Resolve—Through Barrier Handheld Detection”. https://www.agilent.com/en/products/raman-spectroscopy/raman-spectroscopy-systems/handheld-chemical-identification/resolve [accessed Jul 18 2018].

B&W Tek. “STRam”. http://bwtek.com/products/i-raman-pro-st/ [accessed Jan 1 2018].

B&W Tek. “Metrohm Acquires B&W Tek”. https://www.metrohm.com/en/company/news/metrohm-acquires-bw-tek/# [accessed Jul 27 2018].

Cobalt. “Cobalt Insight200M—The Bottle Screener for Liquid, Aerosols and Gels”. https://www.agilent.com/en/products/raman-spectroscopy/raman-spectroscopy-systems/aviation-security/insight200m-liquid-explosive-detection [accessed Jul 18 2018].

Snowy Range Instruments. http://www.wysri.com/ [accessed Jul 19 2018].

Snowy Range Instruments. “Metrohm Acquires Majority of Snowy Range Instruments (SnRI)”. https://www.metrohm.com/en-us/company/news/news-majority-of-snowy-range-instruments/ [accessed Jul 27 2018].

D. Creasey, M. Sullivan, C. Paul, C. Rathmell. “Extending Raman's Reach: Enabling Applications Via Greater Sensitivity and Speed”. In: A. Mahadevan-Jansen, W. Petrich, editors. Biomedical Vibrational Spectroscopy 2018: Advances in Research and Industry. Proc. SPIE. 2018. 10490: 104900V. doi: 10.1117/12.2315634.

J. Bonvallet, B. Auz, J. Rodriguez, T. Olmstead. “Miniature Raman Spectrometer Development”. In: A. Mahadevan-Jansen, W. Petrich, editors. Biomedical Vibrational Spectroscopy 2018: Advances in Research and Industry. Proc. SPIE. 2018. 10490: 104900W. doi: 10.1117/12.2315636.

10.1016/S1386-1425(03)00080-5

10.1366/0003702054280612

T.A. Reichardt, S.E. Bisson, T.J. Kulp. “Standoff Ultraviolet Raman Scattering Detection of Trace Levels of Explosives”. Sandia Report, SAND2011-7955, 2011. https://prod.sandia.gov/techlib-noauth/access-control.cgi/2011/117955.pdf [accessed Oct 6 2018].

Wikipedia. “Spectronic 20”. https://en.wikipedia.org/wiki/spectronic_20 [accessed Mar 19 2018].

For instance, F.D. Snell, F.T. Snell. Colorimetric Analysis. New York, NY: D. Van Nostrand Company, 1921.

Mettler-Toledo. “Spectrophotometry with LockPath Technology”. https://www.mt.com/us/en/home/products/laboratory_analytics_browse/uv-vis-spectrometers/micro-uv-vis-spectrometers.html and thermo fisher scientific [accessed Mar 18 2018].

Thermo Fisher Scientific. “NanoDrop 2000/2000c Spectrophotometers”. https://www.thermofisher.com/order/catalog/product/nd-2000?sid=srch-srp-nd-2000 [accessed Mar 18 2018].

X-Rite. “Portable and Handheld Spectrophotometers”. https://www.xrite.com/categories/portable-spectrophotometers [accessed Jul 26 2018].

C.E. Miller. “Chemical Principles of Near-Infrared Technology”. In: P. Williams, K. Norris, editors. Near-Infrared Technology in the Agriculture and Food Industries. 2nd ed. St Paul, MN: American Association of Cereal Chemists, 2001. Chap. 2, Pp. 19–38.

Anton Paar. “Alcohol Meter”. https://www.anton-paar.com/us-en/products/group/alcohol-meter/ [accessed Mar 18 2018].

Applied Instrument Technologies. “PioNIR: Lab and Online Near-Infrared Analyzers”. http://www.aitanalyzers.com/near-infrared-spectroscopy-pionir.php [accessed Mar 18 2018].

Malvern Panalytical. “ASD Range: Visible, NIR (and SWIR) Spectrometers and Spectroradiometers”. https://www.malvernpanalytical.com/en/products/product-range/asd-range [accessed Jul 26 2018].

D.C. Slaughter, J.A. Abbott. “Analysis of Fruits and Vegetables”. In: C.A. Roberts, J. Workman Jr, J.B. Reeves III, editors. Near Infrared Spectroscopy in Agriculture. Madison, WI: American Society of Agronomy, 2004. Chap. 14, Pp. 377–398.

Bosch. “Home Connect”. https://www.home-connect.com/gb/en/connected-household/x-spect [accessed Jul 26 2018].

Consumer Physics. https://www.consumerphysics.com/ [accessed Jan 1 2018].

Crocombe R.A., 2008, Spectroscopy, 23, 56

Crocombe R.A., 2008, Spectroscopy, 23, 40

Crocombe R.A., 2008, Spectroscopy, 23, 26

Viavi. “MicroNIR Spectrometers”. https://www.viavisolutions.com/en-us/osp/products/micronir-spectrometers [accessed Jan 1 2018].

Spectral Engines. https://www.spectralengines.com/ [accessed Jan 1 2018].

Texas Instruments. “DLP Near-Infrared Spectrometer for Optical Analysis of Liquids and Solids Reference Design”. http://www.ti.com/tool/tida-00155 [accessed Jan 1 2018].

Si-Ware. http://www.si-ware.com/ [accessed Jan 1 2018].

Neospectra. http://www.neospectra.com/ [accessed Jan 1 2018].

Bayspec. “Breeze”. http://www.bayspec.com/spectroscopy/breeze-smart-palm-spectrometer/ [accessed Aug 1 2018].

NANOVIVO. http://www.nanovivomd.com/our-soaps.html [accessed Sep 23 2018].

C.A. Roberts, J. Workman Jr, J.B. Reeves III, editors. Near-Infrared Spectroscopy in Agriculture. Madison, WI: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2004.

D.A. Burns, E.W. Ciurczak. Handbook of Near-Infrared Analysis. Boca Raton, FL: CRC Press, 2007.

P. Williams, K. Norris. Near-Infrared Technology in the Agricultural and Food Industries. St. Paul, MN: AACC Publications, 2001.

John Deere. “Harvestlab”. https://www.deere.com/common/docs/products/equipment/agricultural_management_solutions/i_solutions/spfh_solutions/r2/brochure/harvestlab_brochure/yy0814807_e.pdf. [accessed Sep 24 2018].

E.W. Ciurczak, B. Igne, editors. Pharmaceutical and Medical Applications of Near-Infrared Spectroscopy. Boca Raton, FL: CRC Press, 2014.

C.A. Teixeira dos Santos, R.N. Páscoa, M.L Lopo, J.A. Lopes. “Applications of Portable Near-Infrared Spectrometers”. In: R.A. Meyers, editor. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation., Chichester, UK: John Wiley and Sons, 2015. Pp. 1-26.

10.1366/13-07228

10.1021/cen-v084n043.p033

Thermo Fisher Scientific. “Microphazir AS”. http://www.ahurascientific.com/material-verification/products/microphazirrx/index.php [accessed Jan 1 2018].

Ab Vista. “NIR4 Farm”. https://www.abvista.com/products/gb/nir-4-farm-usa.aspx [accessed Jul 26 2018].

Chr. Hansen. “Chr. Hansen Selects Consumer Physics to Introduce Cutting Edge Real-Time Feed Analysis”. https://www.chr-hansen.com/en/media/2018/3/chr-hansen-selects-consumer-physics-to-introduce-cutting-edge-realtime-feed-analysis [accessed Jul 27 2018].

Soilcares. “AgroCares Nutrient Scanner”. http://www.soilcares.com/en/products/scanner/ [accessed Jul 27 2018].

R. Schmaltz. “What is Precision Agriculture?” https://agfundernews.com/what-is-precision-agriculture.html [accessed Jul 27 2018].

Spectral Engines. “Smart Farm––Concepts and Collaboration for Better Future Farms”. https://www.spectralengines.com/smartfarm-concepts-and-collaboration-for-better-future-farms/ [accessed Jul 27 2018].

Grainsense. “Manage Your Farm Based on Actual Data”. https://www.grainsense.com/services [accessed Jul 27 2018].

A. Heikkilä. “Field FT-IR Instrumentation”. In: R.A. Meyers, editor. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation., Chichester, UK: John Wiley and Sons, 2017. Pp. 1-11.

Thermo Fisher Scientific. “Portable Analysis for Material ID”. http://www.ahurascientific.com/chemical-explosives-id/products/trudefenderftx/index.php [accessed Jan 1 2018].

Smiths Detection. “HazMatID Elite: Handheld Chemical Identifier”. https://www.smithsdetection.com/products/hazmatid-elite/ [accessed Mar 18 2018].

Agilent 4100, 4200 and 4500 Series FT-IR (Danbury, CT): https://www.agilent.com/en-us/products/ftir/ftir-compact-portable-systems [accessed Mar 18 2018].

Global Security.Org. “Military: Triacetone Triperoxide (TATP)”. https://www.globalsecurity.org/military/systems/munitions/tatp.htm [accessed Mar 18 2018].

G.W. Chantry. Long Wave Optics. In The Propagation of Infrared Radiation. London, UK: Academic Press, 1984. Chap. 3, Pp. 223–224.

10.1039/an9598400201

A.L. Smith. Applied Infrared Spectroscopy. New York, NY: John Wiley and Sons, 1979. Chap. 4, Pp. 73–122.

P.R. Griffiths, J.A. de Haseth. Fourier Transform Infrared Spectrometry. In Coupled Techniques. Hoboken, NJ: Wiley-Interscience, 2007. Chap. 23, Pp. 279–281.

P.R. Griffiths, J.A. de Haseth. Fourier Transform Infrared Spectrometry. In Specular Reflection. 2nd ed. Hoboken, NJ: Wiley-Interscience, 2007. Pp. 282–293.

Smiths Detection. “Target-ID: Mobile Illicit-Drug identification Device”. https://www.smithsdetection.com/products/target-id/ [accessed Aug 1 2018].

Thermo Fisher Scientific. “TruDefender FT and TruDefender FTi Handheld Chemical Identification”. https://www.thermofisher.com/order/catalog/product/trudefenderftchem [accessed Jan 1 2018].

Agilent. “4300 Handheld FTIR”. https://www.agilent.com/en/products/ftir/ftir-compact-portable-systems/4300-handheld-ftir [accessed Jan 1 2018].

Thermo Fisher Scientific. “Gemini FTIR/Raman Handheld Analyzer”. https://www.thermofisher.com/us/en/home/industrial/spectroscopy-elemental-isotope-analysis/portable-analysis-material-id/chemical-explosives-narcotics-identification/gemini-ftir-ftir-raman-handheld-analyzer.html [accessed Jan 1 2018].

10.1177/0003702815611063

10.1007/s00216-002-1358-z

10.1021/ac50052a870

10.1126/science.230.4723.286

W. Doherty, B. Falvey, G. Vander Rhodes, L. Krasnobaev, et al. “A Handheld FTIR Spectrometer with Swappable Modules for Chemical Vapor Identification and Surface Swab Analysis”. In: M.A. Druy, R.A. Crocombe, editors. Next-Generation Spectroscopic Technologies VI. Proc. SPIE. 2013. 8726: 87260T. doi: 10.1117/12.2015295.

W. Hug, R. Bhartia, K. Sijapati, L. Beegle, et al. “Improved Sensing Using Simultaneous Deep-UV Raman and Fluorescence Detection”. In: A.W. Fountain, editor. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XV. Proc. SPIE. 2014. 9073: 90730I. doi: 10.1117/12.2053069.

10.1016/j.saa.2005.02.031

10.1016/j.saa.2007.06.046

10.1016/j.sab.2007.10.016

L. Ancillotti, E.M. Castelluci, M. Beucci. “A Combined Raman-LIBS Spectrometer: Toward a Mobile Atomic and Molecular Analytical Tool for in Situ Applications”. In: I.A. Shcherbakov, A. Giardini, V.I. Konov, V.I. Pustovoy, editors. Advanced Laser Technologies. Proc. SPIE. 2005. 5850: 182–189. doi: 10.1117/12.633539.

10.1016/j.saa.2007.03.026

10.1117/1.2896453

10.1021/ac902470v

A.K. Misra, S.K. Sharma, T.E. Acosta, D.E. Bates. “Compact Remote Raman and LIBS System for Detection of Minerals, Water, Ices, and Atmospheric Gases for Planetary Exploration”. In: M.A. Druy, R.A. Crocombe, editors. Next-Generation Spectroscopic Techniques IV. Proc. SPIE. 2011. 8032: 80320Q. doi: 10.1117/12.884392.

10.1063/1.3184102

10.1016/j.sab.2018.07.013

10.1364/AO.54.007598

M.A. Hamilton, S. Piorek, R.A. Crocombe. Sample Analysis. US Patent 8982338 B2. Filed 2013. Issued 2015.

Olympus. “XRF and XRD Analyzers: Terra Portable XRD”. https://www.olympus-ims.com/en/xrf-xrd/mobile-benchtop-xrd/terra/#! [accessed Jul 28 2018].

D.T. Vaniman, D. Bish, G. Guthrie, S. Chipera, et al. “Process Monitoring and Control with CHEMIN, a Miniaturized CCD-Based Instrument for Simultaneous XRD/XRF Analysis”. In: F.P. Doty, editor. Penetrating Radiation Systems and Applications. Proc. SPIE. 1999. 3769: 243–251. doi: 10.1117/12.363687.

10.1007/s12210-015-0477-3

D.W. Sackett. Combined Handheld XRF and OES Systems and Methods. US Patent 10012603 B2. Filed 2014. Issued 2018.

10.1186/s40494-018-0197-y

S. Weagant, V. Karanassios. “Portable Computing for Taking Part of the Lab to the Sample Types of Applications. from Hand Held Personal Digital Assistants to Smart Phones for Mobile Spectrometry”. In: M.A. Druy, R.A. Crocombe, D.P. Bannon, editors. Next-Generation Spectroscopic Technologies VIII. Proc. SPIE. 2015. 9482: 94820N. doi: 10.1117/12.2178359.

R. Fitzgerald, V.I Karanassios. “Wireless, Battery-Operated Data Acquisition System for Mobile Spectrometry Applications and (Potentially) for the Internet of Things”. In: M.A. Druy, R.A. Crocombe, S.M. Barnett, L.T. Profeta, editors. Next-Generation Spectroscopic Technologies X. Proc. SPIE. 2017. 10210: 102100A. doi: 10.1117/12.2262949.

R. Fitzgerald, V. Karanassios. “The Internet of Things (IOT) for a Smartphone-Enabled Optical Spectrometer and Its Use On-Site and (Potentially) for Industry 4.0”. In: M.A. Druy, R.A. Crocombe, S.M. Barnett, L.T.M. Profeta, et al., editors. Next-Generation Spectroscopic Technologies XI. Proc. SPIE. 2018. 10657: 1065705. doi: 10.1117/12.2305466.

S.X. Wang, X.J. Zhou. Spectroscopic Sensor on a Mobile Phone. US Patent 7420663 B2. Filed 2006. Issued 2008.

R. Shatford, V. Karanassios. “3D Printing in Chemistry: Past, Present and Future”. In: M.A. Druy, R.A. Crocombe, editors. Next-Generation Spectroscopic Technologies IX. Proc. SPIE. 2016. 9855: 98550B. doi: 10.1117/12.2224404.

10.1177/0003702816638246

A. Scheeline. “Progress Towards Low Resolution Visible Spectrometry with COTS Components”. In: M.A. Druy, R.A. Crocombe, S.M. Barnett, L.T.M. Profeta, et al., editors. Next-Generation Spectroscopic Technologies XI. Proc. SPIE. 2018. 10657: 1065706. doi: 10.1117/12.2301250.

10.1002/2014GL061462

10.1177/0003702816665127

Labby, Inc. “AI Powered Milk Testing and Analytics Solution on the Farm”. https://www.labbyinc.com/ [accessed Jul 31 2018].

10.1038/srep32504

10.1038/s41598-018-23394-3

Hamamatsu. “Micro-Spectrometers”. https://www.hamamatsu.com/us/en/product/optical-sensors/spectrum-sensor/micro-spectrometer/index.html [accessed Aug 2 2018].

Fringoe. “Spectrometer on the Go!” https://fringoe.com/ [accessed Jul 30 2018].

Linksquare. https://linksquare.io/index.html [accessed Jul 30 2018].

Nanolambda. “NSP32, Spectral Sensing Platform for IoT”. https://nanolambda.myshopify.com/ [accessed Jul 30 2018].

Myspectral. https://myspectral.com/ [accessed Jul 30 2018].

AMS. “Spectral Sensing”. https://ams.com/technology/spectral-sensing [accessed Jul 30 2018[.

Changdong. “Phone with ‘Infrared Vision’ Knows How Fat You Are (Hands On)”. CNET. Jan 6, 2017. https://www.cnet.com/reviews/changhong-h2-preview/ [accessed Aug 1 2018].

A. Rissanen, H. Saari, K. Rainio, I. Stuns, et al. “MEMS FPI-Based Smartphone Hyperspectral Imager”. In: M.A. Druy, R.A. Crocombe, editors. Next-Generation Spectroscopic Technologies IX. Proc. SPIE. 2016. 9855: 985507. doi: 10.1117/12.2229575.

10.1039/c2lc40741h

10.1039/c3lc40991k

10.1039/C4AN01612B

10.1039/C3LC51451J

10.1364/BOE.5.003792

10.1039/C4LC00142G

10.1039/C4LC00010B

10.1364/OE.22.015473

10.1021/acs.analchem.5b01499

10.1364/OL.40.001737

D. Hofmann, P.G. Dittrich, C. Gärtner, R. Klemm. “Multi Hybrid Instrumentations with Smartphones and Smartpads for Innovative In-Field and POC Diagnostics”. In: H. Becker, B.L. Gray, editors. Microfluidics, BioMEMS, and Medical Microsystems XI. Proc. SPIE. 2013. 8615: 861508. doi: 10.1117/12.2005885.

10.1021/acs.jpcc.5b08612

10.1039/C6AY02158A

10.1038/srep29117

10.1039/C7LC00633K

10.1021/acs.jpcc.7b02739

10.1016/j.snb.2017.08.126

10.1021/ac502080t

10.1007/s00216-015-9300-3

10.1039/C4RA15036H

10.1021/ac502137s

10.1016/j.trac.2015.10.019

10.1039/C4LC00010B

10.1021/acs.analchem.7b03848

10.1021/ac5022419

10.1021/acs.analchem.5b01499

10.1126/scitranslmed.aaa0056

F. Ahmed. “Smartphone Spectroscopy Promises a Data-Rich Future”. Photonics Spectra. 2018. https://www.photonics.com/articles/smartphone_spectroscopy_promises_a_data-rich/a63594 [accessed Sep 1 2018].

10.1117/1.OE.52.9.090901

A. Näsilä, R. Trops, I. Stuns, T. Havia, et al. “Hand-Held MEMS Hyperspectral Imager for VNIR Mobile Applications”. In: W. Piyawattanametha, Y.H. Park, H. Zappe, editors. MOEMS and Miniaturized Systems XVII. Proc. SPIE. 2018. 10545: 105450R. doi: 10.1117/12.2286472.

B Guo, A. Näsilä, R. Trops, T. Havia, et al. “Wide-Band Large-Aperture Ag Surface-Micro-Machined MEMS Fabry-Perot Interferometers (AgMFPIs) for Miniaturized Hyperspectral Imaging”. In: W. Piyawattanametha, Y.H. Park, H. Zappe, editors. MOEMS and Miniaturized Systems XVII. Proc. SPIE. 2018. 10545: 105450U. doi: 10.1117/12.2286438.

Tematys (Paris, France) market report: “Spectral Imaging: End-user needs, Markets and Trends”. R201702-013 Spectral Imaging http://files.pharmtech.com/alfresco_images/pharma/2014/08/22/9615b475-a1dd-4808-830c-2cc6bad69a52/article-146489.pdf [accessed Oct 28 2018].

C. Bouyé, T. Robin, B. D’Humières. “Spectral Imaging Spreads into New Industrial and On-Field Applications”. In: Y.G. Soskind, editor. Photonic Instrumentation Engineering V. Proc. SPIE. 2018. 10539: 1053918. doi: 10.1117/12.2287715.

R.A. Schowengerdt. Remote Sensing: Models and Methods for Image Processing. 2nd ed. San Diego, CA: Academic Press, 1997.

E.N. Lewis, L.H. Kidder, E. Lee, K.S. Haber. “Near-Infrared Spectral Imaging with Focal Plane Array Detectors”. In: R. Bhargava, I.W. Levin, editors. Spectrochemical Analysis Using Infrared Multichannel Detectors. Oxford, UK: Blackwell Publishing, 2005. Chap. 2, Pp. 25–55.

10.1255/jnirs.872

10.1016/j.chemolab.2012.02.004

10.1016/j.foodchem.2012.11.040

10.1039/C4CS00062E

10.1255/jnirs.1109

10.1255/jnirs.1141

10.1080/05704928.2018.1425214

J. Duckworth. “Spectroscopic Qualitative Analysis”. In: J. Workman Jr, A. Springsteen, editors. Applied Spectroscopy: A Compact Reference for Practitioners. Chestnut Hill, MA: Academic Press, 1998. Chap. 5, Pp. 166–193.

S.R. Lowry. “Automated Spectral Searching in Infrared, Raman, and Near-Infrared Spectroscopy”. In: J.M. Chalmers, P.R. Griffiths, editors. Handbook of Vibrational Spectroscopy. Chichester, UK: John Wiley and Sons Ltd., 2002. Pp. 1948–1961.

10.1093/chromsci/17.8.434

10.1021/ac00229a034

10.1177/0003702818764446

M. Yaghoobi, D. Wu, R.J. Clewes, M.E. Davies. “Fast Sparse Raman Spectral Unmixing for Chemical Fingerprinting and Quantification”. In: D. Burgess, G. Owen, H. Bouma, F. Carlysle-Davies, et al., editors. Optics and Photonics for Counterterrorism, Crime Fighting, and Defence XII. Proc. SPIE. 2016. 9995: 99950E. doi: 10.1117/12.2241834.

C.D. Brown, G.H. Vander Rhodes. Spectrum Searching Method That Uses Non-Chemical Qualities of the Measurement. US Patent 7254501 B1. Filed 2005. Issued 2007.

R.L. Green, M.D. Hargreaves, C.M. Gardner. “Performance Characterization of a Combined Material Identification and Screening Algorithm”. In: M.A. Druy, R.A. Crocombe, editors. Next-Generation Spectroscopic Technologies VI. Proc. SPIE. 2013. 8726: 87260F. doi: 10.1117/12.2015953.

10.1126/science.3287615

10.1016/j.chemolab.2005.05.004

C.D. Brown, R.L. Green. “Performance Characterization of Material Identification Systems”. In: S.D. Christesen, A.J. Sedlacek, J.B. Gillespie, K.J. Ewing, editors. Chemical and Biological Sensors for Industrial and Environmental Monitoring II. Proc. SPIE. 2006. 6378: 637809. doi: 10.1117/12.686103.

10.1177/0967033517702395

D.A. Burns, E.W. Ciurczak. Handbook of Near-Infrared Analysis. 3rd ed. Boca Raton, FL: CRC Press, 2007. Pp. 123–264.

AUNIR Ingot Libraries. “Ingot Lab”. https://www.aunir.com/products/ingot-lab/ [accessed Jul 28 2018].

10.1366/000370210791414353

10.1177/0003702817736064

10.1177/0003702818778039

M. Frazier. “This Handheld Device Detects Opioids. It’s Not Always Right”. Bloomberg Businessweek. December 21, 2017. https://www.bloomberg.com/news/articles/2017-12-21/this-handheld-device-detects-opioids-it-s-not-always-right [accessed Jan 1 2018].

Rigaku. “Rigaku Analytical Devices Announces Fentanyl Library Additions to Progeny ResQ Handheld Raman Analyzer”. https://www.rigaku.com/en/press/rad/fentanyl [accessed Oct 9 2018].

B&W Tek. “Major Fentanyl and Heroin Update Now Available for TacticID Handheld ID Instruments”. http://bwtek.com/news/major-fentanyl-and-heroin-update-now-available-for-tacticid-handheld-id-instruments/ [accessed Jan 2 2018].

R.A. Crocombe, E.V. Miseo. “Portable Spectroscopy and the Fight Against Food Fraud”. Photonics. 2017. Pp. 30–37. https://www.photonics.com/article.aspx?aid=62147 [accessed Oct 9 2018].

R. Evershed, N. Temple. Sorting the Beef from the Bull: The Science of Food Fraud Forensics. London, UK: Bloomsbury Sigma, 2016.

S. Yager. “The Wheels of Crime are Greased with Olive Oil”. The Atlantic. 2015. https://www.theatlantic.com/magazine/archive/2015/07/high-cost-food-fraud/395327/ [accessed Jul 28 2018].

10.3390/s17061453

10.5740/jaoacint.17-0425

G. Downey. Advances in Food Authenticity Testing. Cambridge, UK: Woodhead Publishing, 2016.

Popping B., 2018, J. AOAC Int, 101, 1, 10.1093/jaoacint/qsaa091

J.L. Smith. “The Pursuit of Noninvasive Glucose: ‘Hunting the Deceitful Turkey’”. 4th ed. Mendosa. http://www.mendosa.com/The%20Pursuit%20of%20Noninvsive%20Glucose,%20Fourth%20Edition.pdf [accessed Oct 9 2018].