Porous textile composites (PTCs) for the removal and the decomposition of chemical warfare agents (CWAs) – A review
Tài liệu tham khảo
Ganesan, 2010, Chemical warfare agents, J. Pharm. Bioallied Sci., 2, 166, 10.4103/0975-7406.68498
Nurfaizey, 2012, Functional nanofibers in clothing for protection against chemical and biological hazards, Funct. Nanofibers Their Appl., Elsevier, 236, 10.1533/9780857095640.2.236
Jang, 2015, Update 1 of: destruction and detection of chemical warfare agents, Chem. Rev., 115, PR1, 10.1021/acs.chemrev.5b00402
Picard, 2019, Introduction to chemical warfare agents, relevant simulants and modern neutralisation methods, Org. Biomol. Chem., 17, 6528, 10.1039/C9OB00802K
P. Lodewyckx, Adsorption of chemical warfare agents, in: Act. Carbon Surf. Environ. Remediat., n.d.
Q. Truong, E. Wilusz, Advances in chemical and biological protective clothing, in: Smart Text. Prot., Elsevier, 2013: pp. 364–377. 10.1533/9780857097620.2.364.
Oudejans, 2016, Decontamination of personal protective equipment and related materials contaminated with toxic industrial chemicals and chemical warfare agent surrogates, J. Environ. Chem. Eng., 4, 2745, 10.1016/j.jece.2016.05.022
M. Guidotti, C. Evangelisti, A. Rossodivita, M.C. Ranghieri, Nano-structured Solids and Heterogeneous Catalysts for the Selective Decontamination of Chemical Warfare Agents, in: J. Banoub (Ed.), Detect. Chem. Biol. Radiol. Nucl. Agents Prev. Terror., Springer Netherlands, Dordrecht, 2014: pp. 275–284. 10.1007/978-94-017-9238-7_17.
Grissom, 2021, Metal−organic framework- and polyoxometalate-based sorbents for the uptake and destruction of chemical warfare agents, ACS Appl. Mater. Interfaces., 12, 14641, 10.1021/acsami.9b20833
V.B. Thakare, N.K. Tripathi, V.V. Singh, M. Sathe, B. Singh, Activated Carbon Fabric: An Adsorbent Material for Chemical Protective Clothing, Def. Sci. J. 68 (2017) 83. 10.14429/dsj.68.11734.
Liu, 2017, Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks, Coord. Chem. Rev., 346, 101, 10.1016/j.ccr.2016.11.008
Kirlikovali, 2020, Zirconium-based metal-organic frameworks for the catalytic hydrolysis of organophosphorus nerve agents, ACS Appl. Mater. Interfaces., 12, 14702, 10.1021/acsami.9b20154
Phadatare, 2020, Metal organic framework functionalized fabrics for detoxification of chemical warfare agents, Ind. Eng. Chem. Res., 59, 569, 10.1021/acs.iecr.9b06695
S. Balasubramanian, A.J. Kulandaisamy, K.J. Babu, A. Das, J.B. Balaguru Rayappan, Metal Organic Framework Functionalized Textiles as Protective Clothing for the Detection and Detoxification of Chemical Warfare Agents—A Review, Ind. Eng. Chem. Res. (2021) acs.iecr.0c06096. 10.1021/acs.iecr.0c06096.
G. Hoog, A. Steinmetz, eds., 9. Convention on the Prohibition of the Development, Production, Stockpiling and Use of Chemical Weapons and on their Destruction, in: Int. Conv. Prot. Humanity Environ., De Gruyter, 1993: pp. 332–364. 10.1515/9783110874815-026.
What is a Chemical Weapon?, OPCW. (n.d.). https://www.opcw.org/our-work/what-chemical-weapon (accessed May 27, 2021).
Wattana, 2009, Mustard gas or sulfur mustard: an old chemical agent as a new terrorist threat, Prehospital Disaster Med., 24, 19, 10.1017/S1049023X0000649X
Thiermann, 2013, Limitations and challenges in treatment of acute chemical warfare agent poisoning, Chem. Biol. Interact., 206, 435, 10.1016/j.cbi.2013.09.015
Giannakoudakis, 2018
Giannakoudakis, 2019, Analysis of interactions of mustard gas surrogate vapors with porous carbon textiles, Chem. Eng. J., 362, 758, 10.1016/j.cej.2019.01.064
Munro, 1999, The sources, fate, and toxicity of chemical warfare agent degradation products, Environ. Health Perspect., 107, 933, 10.1289/ehp.99107933
Osovsky, 2014, Decontamination of adsorbed chemical warfare agents on activated carbon using hydrogen peroxide solutions, Environ. Sci. Technol., 48, 10912, 10.1021/es502981y
Liu, 2016, Efficient and selective oxidation of sulfur mustard using singlet oxygen generated by a pyrene-based metal–organic framework, J. Mater. Chem. A., 4, 13809, 10.1039/C6TA05903A
Bobbitt, 2017, Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents, Chem. Soc. Rev., 46, 3357, 10.1039/C7CS00108H
Kaiser, 2007, Effect of pore size distribution of commercial activated carbon fabrics on the adsorption of CWA simulants from the liquid phase, Ind. Eng. Chem. Res., 46, 6126, 10.1021/ie061429n
Lavoie, 2011, Using cheminformatics to find simulants for chemical warfare agents, J. Hazard. Mater., 194, 85, 10.1016/j.jhazmat.2011.07.077
Bartelt-Hunt, 2008, A review of chemical warfare agent simulants for the study of environmental behavior, Crit. Rev. Environ. Sci. Technol., 38, 112, 10.1080/10643380701643650
Meridian Medical Technologies | ATNAA, (n.d.). https://www.meridianmeds.com/products/atnaa (accessed December 9, 2020).
Chemical Agent Health-Based Standards and Guidelines Summary Table 1: Criteria for Airborne Exposures as of July 2011, (2011).
Agrawal, 2018, How useful are common simulants of chemical warfare agents at predicting adsorption behavior?, J. Phys. Chem. C., 122, 26061, 10.1021/acs.jpcc.8b08856
Candel, 2015, Hydrolysis of DCNP (a Tabun mimic) catalysed by mesoporous silica nanoparticles, Microporous Mesoporous Mater., 217, 30, 10.1016/j.micromeso.2015.05.041
Ma, 2021, Near-instantaneous catalytic hydrolysis of organophosphorus nerve agents with zirconium-based MOF/hydrogel composites, Chem Catal., 1, 721, 10.1016/j.checat.2021.06.008
Bhuiyan, 2019, Advances and applications of chemical protective clothing system, J. Ind. Text., 49, 97, 10.1177/1528083718779426
Ormond, 2014, Chemical, biological, radiological and nuclear (CBRN) protective clothing, Prot. Cloth., Elsevier, 112, 10.1533/9781782420408.1.112
Gugliuzza, 2013, A review on membrane engineering for innovation in wearable fabrics and protective textiles, J. Membr. Sci., 446, 350, 10.1016/j.memsci.2013.07.014
Lodewyckx, 2006
Schreuder-Gibson, 2003, Chemical and biological protection and detection in fabrics for protective clothing, MRS Bull., 28, 574, 10.1557/mrs2003.168
GORE® CHEMPAK® Chemical Protection | GORE-TEX Professional, (n.d.). https://www.goretexprofessional.com/technologies/gore-chempak (accessed June 11, 2021).
Ramaseshan, 2006, Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants, Nanotechnology, 17, 2947, 10.1088/0957-4484/17/12/021
V.H. Grassian, S.C. Larsen, Applications of Nanocrystalline Zeolites to CWA Decontamination, in: R. Nagarajan, W. Zukas, T.A. Hatton, S. Lee (Eds.), Nanosci. Nanotechnol. Chem. Biol. Def., American Chemical Society, Washington DC, 2009: pp. 249–260. 10.1021/bk-2009-1016.ch019.
Kumar, 2015, Montmorillonites supported with metal oxide nanoparticles for decontamination of sulfur mustard, Appl. Clay Sci., 116–117, 263, 10.1016/j.clay.2015.04.007
D.L. Bish, Parallels and Distinctions Between Clay Minerals and Zeolites, in: Dev. Clay Sci., Elsevier, 2013: pp. 783–800. 10.1016/B978-0-08-098258-8.00026-2.
Costenaro, 2017, Physico-chemical properties, biological and environmental impact of Nb-saponites catalysts for the oxidative degradation of chemical warfare agents, ChemistrySelect, 2, 1812, 10.1002/slct.201700042
Koohsaryan, 2016, Nanosized and hierarchical zeolites: A short review, Chin. J. Catal., 37, 447, 10.1016/S1872-2067(15)61038-5
Moshoeshoe, 2017, A review of the chemistry, structure, properties and applications of zeolites, Am. J. Mater. Sci., 26
Opanasenko, 2016, Two-dimensional zeolites in catalysis: current status and perspectives, Catal. Sci. Technol., 6, 2467, 10.1039/C5CY02079D
Carniato, 2018, Iron-montmorillonite clays as active sorbents for the decontamination of hazardous chemical warfare agents, Dalton Trans., 47, 2939, 10.1039/C7DT03859C
Roul, 2017, Comparison of four different fuller’s earth formulations in skin decontamination, J. Appl. Toxicol., 37, 1527, 10.1002/jat.3506
Boone, 2007, Present state of CBRN decontamination methodologies, TNO
Michalkova, 2004, Adsorption of Sarin and Soman on Dickite: An ab Initio ONIOM Study, J. Phys. Chem. B., 108, 1918, 10.1021/jp030391e
Bromberg, 2011, Montmorillonite functionalized with pralidoxime as a material for chemical protection against organophosphorous compounds, ACS Appl. Mater. Interfaces., 3, 1479, 10.1021/am200041e
Osovsky, 2020, Decontamination of sarin in water by designed oxime-clay composites, Appl. Clay Sci., 192, 10.1016/j.clay.2020.105620
Plachá, 2014, Modified clay minerals efficiency against chemical and biological warfare agents for civil human protection, J. Hazard. Mater., 271, 65, 10.1016/j.jhazmat.2014.01.059
Carniato, 2014, Niobium(V) saponite clay for the catalytic oxidative abatement of chemical warfare agents, Angew. Chem. Int. Ed., 53, 10095, 10.1002/anie.201405134
Son, 2018, Rapid capture and hydrolysis of a sulfur mustard gas in silver-ion-exchanged zeolite Y, ACS Appl. Mater. Interfaces., 10, 40651, 10.1021/acsami.8b15362
Li, 2010, Interaction of dimethylmethylphosphonate with zeolite Y: impedance-based sensor for detecting nerve agent simulants, J. Phys. Chem. C., 114, 7986, 10.1021/jp100088w
Bellamy, 1994, Reaction of gaseous sulfur mustard with zeolite 1 3 X t, J. Chem. Soc. Perkin Trans., 4
Wagner, 1999, Reactions of VX, HD, and their simulants with NaY and AgY Zeolites. Desulfurization of VX on AgY, Langmuir, 15, 8113, 10.1021/la990716b
Singh, 2015, Multifunctional silver-exchanged zeolite micromotors for catalytic detoxification of chemical and biological threats, Adv. Funct. Mater., 25, 2147, 10.1002/adfm.201500033
Sadeghi, 2018, A novel CuO NPs/AgZSM-5 zeolite composite adsorbent: Synthesis, identification and its application for the removal of sulfur mustard agent simulant, J. Alloys Compd., 748, 995, 10.1016/j.jallcom.2018.03.239
Meenu, 2020, Synthesis and characterization of zeolite Linde Type W and its metal oxide composite Ag-O-LTW used for the decontamination of chemical warfare agent simulant, Phosphorus Sulfur Silicon Relat. Elem., 1
Ji, 2012, Evaluation of Cu-ZSM-5 zeolites as QCM sensor coatings for DMMP detection, Sens. Actuators B Chem., 166–167, 50, 10.1016/j.snb.2011.12.014
Yang, 2006, Sodium X-type faujasite zeolite decomposition of dimethyl methylphosphonate (DMMP) to methylphosphonate: Nucleophilic zeolite reactions I, Microporous Mesoporous Mater., 92, 56, 10.1016/j.micromeso.2005.12.018
Sadeghi, 2016, Decontamination of toxic chemical warfare sulfur mustard and nerve agent simulants by NiO NPs/Ag-clinoptilolite zeolite composite adsorbent, J. Environ. Chem. Eng., 4, 2990, 10.1016/j.jece.2016.06.008
Meng, 2011, Adsorption of organophosphates into microporous and mesoporous NaX zeolites and subsequent chemistry, Environ. Sci. Technol., 45, 3000, 10.1021/es1030678
Chen, 2013, Activated carbon powders from wool fibers, Powder Technol., 234, 76, 10.1016/j.powtec.2012.09.026
Chiu, 2012, Synthesis and characterization of cotton-made activated carbon fiber and its adsorption of methylene blue in water treatment, Biomass Bioenergy., 46, 102, 10.1016/j.biombioe.2012.09.023
Z. Yue, J. Economy, Carbonization and activation for production of activated carbon fibers, in: Act. Carbon Fiber Text., Elsevier, 2017: pp. 61–139. 10.1016/B978-0-08-100660-3.00004-3.
Boutillara, 2019, In-situ copper impregnation by chemical activation with CuCl2 and its application to SO2 and H2S capture by activated carbons, Chem. Eng. J., 372, 631, 10.1016/j.cej.2019.04.183
Yuan, 2016, KOH-activated graphite nanofibers as CO2 adsorbents, Carbon Lett., 19, 99, 10.5714/CL.2016.19.099
Yu, Son, Yoo, Cha, Lee, Kim, Chitosan-Derived Porous Activated Carbon for the Removal of the Chemical Warfare Agent Simulant Dimethyl Methylphosphonate, Nanomaterials. 9 (2019) 1703. 10.3390/nano9121703.
Cojocaru, 2009, Synergism of activated carbon and undoped and nitrogen-doped TiO 2 in the photocatalytic degradation of the chemical warfare agents soman, VX, and Yperite, ChemSusChem., 2, 427, 10.1002/cssc.200800246
Gopinath, 2018, Strategies to design modified activated carbon fibers for the decontamination of water and air, Environ. Chem. Lett., 16, 1137, 10.1007/s10311-018-0740-9
Hassan, 2020, Recent trends in activated carbon fibers production from various precursors and applications—A comparative review, J. Anal. Appl. Pyrolysis., 145, 10.1016/j.jaap.2019.104715
Phan, 2006, Production of fibrous activated carbons from natural cellulose (jute, coconut) fibers for water treatment applications, Carbon., 44, 2569, 10.1016/j.carbon.2006.05.048
Wang, 2020, Activated carbon fiber derived from the seed hair fibers of Metaplexis japonica: Novel efficient adsorbent for methylene blue, Ind. Crops Prod., 148, 10.1016/j.indcrop.2020.112319
Zhang, 2018, Coconut-based activated carbon fibers for efficient adsorption of various organic dyes, RSC Adv., 8, 42280, 10.1039/C8RA08990F
Das, 2004, Removal of volatile organic compound by activated carbon fiber, Carbon., 42, 2949, 10.1016/j.carbon.2004.07.008
Lee, 2010, Activated carbon nanofiber produced from electrospun polyacrylonitrile nanofiber as a highly efficient formaldehyde adsorbent, Carbon., 48, 4248, 10.1016/j.carbon.2010.07.034
Ursini, 2017, Adsorption of dinitrogen tetroxide on activated carbon fabric derived from novolacs, Fuller. Nanotub. Carbon Nanostructures., 25, 589, 10.1080/1536383X.2017.1353975
Wang, 2015, Nitrogen-containing activated carbon fibers derived from silk fibers for CO2 capture, Mater. Lett., 152, 145, 10.1016/j.matlet.2015.03.027
Yue, 2005, Nanoparticle and nanoporous carbon adsorbents for removal of trace organic contaminants from water, J. Nanoparticle Res., 7, 477, 10.1007/s11051-005-4719-7
Ryu, 2004, Activated carbon fibers for the removal of chemical warfare simulants, J. Ceram. Soc. Jpn., 112, 1539
Kang, 2011, High-sensitivity gas sensor using electrically conductive and porosity-developed carbon nanofiber, Colloids Surf. Physicochem. Eng. Asp., 384, 297, 10.1016/j.colsurfa.2011.04.001
Kim, 2014, Preparation and gas-sensing properties of pitch-based carbon fiber prepared using a melt-electrospinning method, Res. Chem. Intermed., 40, 2571, 10.1007/s11164-014-1670-1
Hu, 2014, High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes, J. Power Sources., 270, 106, 10.1016/j.jpowsour.2014.07.063
Lee, 2016, Electrochemical behavior of pitch-based activated carbon fibers for electrochemical capacitors, Energy Convers. Manag., 125, 347, 10.1016/j.enconman.2016.06.006
Xu, 2010, Mesoporous activated carbon fiber as electrode material for high-performance electrochemical double layer capacitors with ionic liquid electrolyte, J. Power Sources., 195, 2118, 10.1016/j.jpowsour.2009.09.077
Kistler, 1931, Coherent Expanded Aerogels and Jellies, Nature., 127, 741, 10.1038/127741a0
Pierre, 2002, Chemistry of Aerogels and Their Applications, Chem. Rev., 102, 4243, 10.1021/cr0101306
Barrios, 2019, Nanomaterials in advanced, high-performance aerogel composites: a review, Polymers, 11, 726, 10.3390/polym11040726
Gan, 2019, Carbon aerogels for environmental clean-up: carbon aerogels for environmental clean-up, Eur. J. Inorg. Chem., 2019, 3126, 10.1002/ejic.201801512
Amonette, 2017, Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: A review, Microporous Mesoporous Mater., 250, 100, 10.1016/j.micromeso.2017.04.055
U. Berardi, Aerogel-enhanced insulation for building applications, in: Nanotechnol. Eco-Effic. Constr., Elsevier, 2019: pp. 395–416. 10.1016/B978-0-08-102641-0.00017-7.
Hu, 2019, Carbon aerogel for insulation applications: A review, Int. J. Thermophys., 40, 39, 10.1007/s10765-019-2505-5
Stergar, 2016, Review of aerogel-based materials in biomedical applications, J. Sol-Gel Sci. Technol., 77, 738, 10.1007/s10971-016-3968-5
V. Štengl, S. Bakardjieva, M. Maøíková, J. Šubrt, F. Opluštil, M. Olšanská, Aerogel nanoscale aluminium oxides as a destructive sorbent for mustard gas, (2003) 6.
Štengl, 2004, Aerogel nanoscale magnesium oxides as a destructive sorbent for toxic chemical agents, Open Chem., 2, 10.2478/BF02476182
Han, 2017, Three-dimensional hierarchical porous graphene aerogel for efficient adsorption and preconcentration of chemical warfare agents, Carbon., 122, 556, 10.1016/j.carbon.2017.05.031
M. McEntee, W.O. Gordon, A. Balboa, D. Delia, C. Pitman, A. Pennington, D.R. Rolison, J. Pietron, P.A. DeSario, Mesoporous Cu Nanoparticle/TiO 2 Aerogels for Room-Temperature Hydrolytic Decomposition of Chemical Warfare Simulant Dimethyl Methylphosphonate, ACS Appl. Nano Mater. (2020) acsanm.0c00228. 10.1021/acsanm.0c00228.
Ren, 2012, Ordered mesoporous metal oxides: synthesis and applications, Chem. Soc. Rev., 41, 4909, 10.1039/c2cs35086f
Praveen Kumar, 2013, Mesoporous CuO–ZnO binary metal oxide nanocomposite for decontamination of sulfur mustard, Mater. Chem. Phys., 142, 484, 10.1016/j.matchemphys.2013.07.034
Praveen Kumar, 2016, Synthesis of mesoporous metal aluminate nanoparticles and studies on the decontamination of sulfur mustard, J. Alloys Compd., 662, 44, 10.1016/j.jallcom.2015.11.181
Praveen Kumar, 2016, Mesoporous binary metal oxide nanocomposites: Synthesis, characterization and decontamination of sulfur mustard, Mater. Chem. Phys., 173, 168, 10.1016/j.matchemphys.2016.01.063
Mahato, 2010, Mesoporous manganese oxide nanobelts for decontamination of sarin, sulphur mustard and chloro ethyl ethyl sulphide, Microporous Mesoporous Mater., 132, 15, 10.1016/j.micromeso.2009.05.035
Martin, 2005, Mesoporous metal oxides formed by aggregation of nanocrystals. Behavior of aluminum oxide and mixtures with magnesium oxide in destructive adsorption of the chemical warfare surrogate 2-chloroethylethyl sulfide, Microporous Mesoporous Mater., 83, 47, 10.1016/j.micromeso.2005.04.003
Prasad, 2010, Decontamination of Yperite using mesoporous mixed metal oxide nanocrystals, J. Hazard. Mater., 183, 847, 10.1016/j.jhazmat.2010.07.104
Ringenbach, 2005, Vanadium-Doped Acid-Prepared Mesoporous Silica: Synthesis, Characterization, and Catalytic Studies on the Oxidation of a Mustard Gas Analogue, Chem. Mater., 17, 5580, 10.1021/cm051372f
Sadeghi, 2017, Synthesis and application of Pb-MCM-41/ZnNiO 2 as a novel mesoporous nanocomposite adsorbent for the decontamination of chloroethyl phenyl sulfide (CEPS), Appl. Surf. Sci., 400, 471, 10.1016/j.apsusc.2016.12.224
Saxena, 2012, Removal of sulphur mustard, sarin and simulants on impregnated silica nanoparticles, J. Hazard. Mater., 211–212, 226, 10.1016/j.jhazmat.2011.07.117
Vu, 2015, Mesoporous magnesium oxide and its composites: Preparation, characterization, and removal of 2-chloroethyl ethyl sulfide, Chem. Eng. J., 269, 82, 10.1016/j.cej.2015.01.089
Štengl, 2011, Mesoporous titanium–manganese dioxide for sulphur mustard and soman decontamination, Mater. Res. Bull., 46, 2050, 10.1016/j.materresbull.2011.07.003
Štengl, 2012, Mesoporous manganese oxide for warfare agents degradation, Microporous Mesoporous Mater., 156, 224, 10.1016/j.micromeso.2012.02.031
Štengl, 2012, Mesoporous iron–manganese oxides for sulphur mustard and soman degradation, Mater. Res. Bull., 47, 4291, 10.1016/j.materresbull.2012.09.015
Alvaro, 2010, Visible-light photocatalytic activity of gold nanoparticles supported on template-synthesized mesoporous titania for the decontamination of the chemical warfare agent Soman, Appl. Catal. B Environ., 99, 191, 10.1016/j.apcatb.2010.06.019
Woo, 2019, Positive Effects of Impregnation of Fe-oxide in Mesoporous Al-Oxides on the Decontamination of Dimethyl Methylphosphonate, Catalysts., 9, 898, 10.3390/catal9110898
Rogge, 2017, Metal–organic and covalent organic frameworks as single-site catalysts, Chem. Soc. Rev., 46, 3134, 10.1039/C7CS00033B
Ding, 2013, Covalent organic frameworks (COFs): from design to applications, Chem Soc Rev., 42, 548, 10.1039/C2CS35072F
Zhang, 2012, Functional porous organic polymers for heterogeneous catalysis, Chem Soc Rev., 41, 2083, 10.1039/C1CS15227K
K. Geng, T. He, R. Liu, S. Dalapati, K.T. Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang, D. Jiang, Covalent Organic Frameworks: Design, Synthesis, and Functions, Chem. Rev. (2020) acs.chemrev.9b00550. 10.1021/acs.chemrev.9b00550.
Vardhan, 2019, Pore surface engineering of covalent organic frameworks: structural diversity and applications, Nanoscale., 11, 21679, 10.1039/C9NR07525A
McGann, 2018, Air Activated Self-Decontaminating Polydicyclopentadiene PolyHIPE Foams for Rapid Decontamination of Chemical Warfare Agents, Macromol Rapid Commun., 39, 1800194, 10.1002/marc.201800194
Totten, 2013, Enhanced Catalytic Activity through the Tuning of Micropore Environment and Supercritical CO 2 Processing: Al(Porphyrin)-Based Porous Organic Polymers for the Degradation of a Nerve Agent Simulant, J. Am. Chem. Soc., 135, 11720, 10.1021/ja405495u
Kaur, 2011, Porous Organic Polymers in Catalysis: Opportunities and Challenges, ACS Catal., 1, 819, 10.1021/cs200131g
Totten, 2013, Catalytic Solvolytic and Hydrolytic Degradation of Toxic Methyl Paraoxon with La(catecholate)-Functionalized Porous Organic Polymers, ACS Catal., 3, 1454, 10.1021/cs4001738
Zhi, 2019, Conjugated Microporous Polymers as Heterogeneous Photocatalysts for Efficient Degradation of a Mustard-Gas Simulant, ACS Appl. Mater. Interfaces., 11, 37578, 10.1021/acsami.9b10958
He, 2019, A Benzimidazole-Containing Covalent Organic Framework-Based QCM Sensor for Exceptional Detection of CEES, Cryst. Growth Des., 19, 3543, 10.1021/acs.cgd.9b00409
Wang, 2020, Polymer of intrinsic microporosity (PIM) based fibrous mat: combining particle filtration and rapid catalytic hydrolysis of chemical warfare agent simulants into a highly sorptive, breathable, and mechanically robust fiber matrix, Mater. Today Adv., 8
Jung, 2020, Reactive Porous Polymers for Detoxification of a Chemical Warfare Agent Simulant, Chem. Mater., 32, 9299, 10.1021/acs.chemmater.0c03160
Jung, 2021, An Amidoxime-Functionalized Porous Reactive Fiber against Toxic Chemicals, ACS Mater. Lett., 3, 320, 10.1021/acsmaterialslett.0c00598
S. Royuela, R. Gil-San Millán, M.J. Mancheño, M.M. Ramos, J.L. Segura, J.A.R. Navarro, F. Zamora, Catalytically Active Imine-based Covalent Organic Frameworks for Detoxification of Nerve Agent Simulants in Aqueous Media, Materials. 12 (2019) 1974. 10.3390/ma12121974.
Farha, 2012, Metal−Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit ?, J. Am. Chem. Soc., 134, 15016, 10.1021/ja3055639
Janiak, 2010, MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs)w, New J. Chem., 34, 2366, 10.1039/c0nj00275e
Silva, 2015, Multifunctional metal–organic frameworks: from academia to industrial applications, Chem. Soc. Rev., 44, 6774, 10.1039/C5CS00307E
F. Millange, C. Serre, G. Férey, Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first Criii hybrid inorganic–organic microporous solids: Criii(OH)·{O2C–C6H4–CO2}·{HO2C–C6H4–CO2H}xElectronic supplementary information (ESI) available: crystal data, atomic coordinates and metrical parameters for MIL-53as and MIL-53ht. See http://www.rsc.org/suppdata/cc/b2/b201381a/, Chem. Commun. (2002) 822–823. 10.1039/b201381a.
Chui, 1999, A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n, Science., 283, 1148, 10.1126/science.283.5405.1148
Li, 1999, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature., 402, 276, 10.1038/46248
Cavka, 2008, A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability, J. Am. Chem. Soc., 130, 13850, 10.1021/ja8057953
Zou, 2010, A Porous Metal−Organic Replica of α-PbO 2 for Capture of Nerve Agent Surrogate, J. Am. Chem. Soc., 132, 17996, 10.1021/ja101440z
Roy, 2012, Kinetics of degradation of sulfur mustard and sarin simulants on HKUST-1 metal organic framework, Dalton Trans., 41, 12346, 10.1039/c2dt31888a
Ma, 2011, A Sodalite-Type Porous Metal−Organic Framework with Polyoxometalate Templates: Adsorption and Decomposition of Dimethyl Methylphosphonate, J. Am. Chem. Soc., 133, 4178, 10.1021/ja109659k
Katz, 2014, Simple and Compelling Biomimetic Metal-Organic Framework Catalyst for the Degradation of Nerve Agent Simulants, Angew. Chem., 126, 507, 10.1002/ange.201307520
Mian, 2020, Catalytic Degradation of an Organophosphorus Agent at Zn−OH Sites in a Metal−Organic Framework, Chem Mater., 32, 6998, 10.1021/acs.chemmater.0c02373
Wang, 2013, Organophophorous Ester Degradation by Chromium(III)Terephthalate Metal−Organic Framework (MIL-101) Chelated to N, N-Dimethylaminopyridine and Related Aminopyridines, ACS Appl. Mater. Interfaces., 5, 1269, 10.1021/am302359b
Vellingiri, 2017, Metal–organic frameworks as media for the catalytic degradation of chemical warfare agents, Coord. Chem. Rev., 353, 159, 10.1016/j.ccr.2017.10.010
Howarth, 2016, Chemical, thermal and mechanical stabilities of metal–organic frameworks, Nat. Rev. Mater., 1, 15018, 10.1038/natrevmats.2015.18
Peterson, 2015, Tailoring the Pore Size and Functionality of UiO-Type Metal−Organic Frameworks for Optimal Nerve Agent Destruction, Inorg. Chem., 54, 9684, 10.1021/acs.inorgchem.5b01867
Seo, 2021, Robust Nanocellulose/Metal–Organic Framework Aerogel Composites: Superior Performance for Static and Continuous Disposal of Chemical Warfare Agent Simulants, ACS Appl. Mater. Interfaces., 13, 33516, 10.1021/acsami.1c08138
Shen, 2019, Catalytic MOF-loaded cellulose sponge for rapid degradation of chemical warfare agents simulant, Carbohydr. Polym., 213, 184, 10.1016/j.carbpol.2019.02.044
Ma, 2020, Ultrastable Mesoporous Hydrogen-Bonded Organic Framework-Based Fiber Composites toward Mustard Gas Detoxification, Cell Rep. Phys. Sci., 1
Liu, 2015, Selective Photooxidation of a Mustard-Gas Simulant Catalyzed by a Porphyrinic Metal-Organic Framework, Angew. Chem., 127, 9129, 10.1002/ange.201503741
Lee, 2020, Protective fabrics: metal-organic framework textiles for rapid photocatalytic sulfur mustard simulant detoxification, Matter., 2, 404, 10.1016/j.matt.2019.11.005
Zhang, 2018, Highly efficient and selective photooxidation of sulfur mustard simulant by a triazolobenzothiadiazole-moiety-functionalized metal−organic framework in air, Inorg. Chem., 57, 4230, 10.1021/acs.inorgchem.8b00106
Y. Yue, G. Han, Q. Wu, Transitional Properties of Cotton Fibers from Cellulose I to Cellulose II Structure, BioResources. 8 (2013) 6460–6471. 10.15376/biores.8.4.6460-6471.
J. Hu, B. Kumar, J. Lu, Handbook of Fibrous Materials, Volume 1 Production and Characterization Volume 2 Applications in Energy, Environmental Science and Healthcare, Wiley-VCH, 2020.
Ramamoorthy, 2015, A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers, Polym. Rev., 55, 107, 10.1080/15583724.2014.971124
M. Gomes, H. Azevedo, P. Malafaya, S. Silva, J. Oliveira, G. Silva, R.S. João Mano, R. Reis, Natural Polymers in Tissue Engineering Applications, in: Handb. Biopolym. Biodegrad. Plast., Elsevier, 2013: pp. 385–425. 10.1016/B978-1-4557-2834-3.00016-1.
Y. Qin, A brief description of textile fibers, in: Med. Text. Mater., Elsevier, 2016: pp. 23–42. 10.1016/B978-0-08-100618-4.00003-0.
Yetisen, 2016, Nanotechnology in textiles, ACS Nano., 10, 3042, 10.1021/acsnano.5b08176
Kim, 2018, Degradation of chemical warfare agents over cotton fabric functionalized with UiO-66-NH2, RSC Adv., 8, 41633, 10.1039/C8RA06805D
Rubin, 2018, Surface-anchored metal-organic framework–cotton material for tunable antibacterial copper delivery, ACS Appl. Mater. Interfaces., 10, 15189, 10.1021/acsami.7b19455
da Silva Pinto, 2012, In situ synthesis of a Cu-BTC metal–organic framework (MOF 199) onto cellulosic fibrous substrates: cotton, Cellulose., 19, 1771, 10.1007/s10570-012-9752-y
Bunge, 2018, Synthesis and characterization of UiO-66-NH 2 metal-organic framework cotton composite textiles, Ind. Eng. Chem. Res., 57, 9151, 10.1021/acs.iecr.8b01010
Mirkovic, 2019, Crystal growth of metal-organic framework-5 around cellulose-based fibers having a necklace morphology, ACS Omega., 4, 169, 10.1021/acsomega.8b02332
Zhao, 2014, Highly adsorptive, MOF-functionalized nonwoven fiber mats for hazardous gas capture enabled by atomic layer deposition, Adv. Mater. Interfaces., 1, 1400040, 10.1002/admi.201400040
Khan, 2019, A review on recent advances in chitosan based composite for hemostatic dressings, Int. J. Biol. Macromol., 124, 138, 10.1016/j.ijbiomac.2018.11.045
Islam, 2017, Chitin and chitosan: structure, properties and applications in biomedical engineering, J. Polym. Environ., 25, 854, 10.1007/s10924-016-0865-5
Dalton, 2015, Development of haemostatic decontaminants for the treatment of wounds contaminated with chemical warfare agents. 2: Evaluation of in vitro topical decontamination efficacy using undamaged skin: Wound decontamination: Topical efficacy, J. Appl. Toxicol., 35, 543, 10.1002/jat.3060
Murphy, 2009, Biomedical applications of chemically-modified silk fibroin, J. Mater. Chem., 19, 6443, 10.1039/b905802h
Gore, 2019, Progress in silk materials for integrated water treatments: Fabrication, modification and applications, Chem. Eng. J., 374, 437, 10.1016/j.cej.2019.05.163
Chen, 2018, Chemically modified silk proteins, Adv. Eng. Mater., 20, 1700961, 10.1002/adem.201700961
Huang, 2009, Fabrication and properties of carbon fibers, Materials., 2, 2369, 10.3390/ma2042369
Xu, 2015, Graphene fiber: a new trend in carbon fibers, Mater. Today., 18, 480, 10.1016/j.mattod.2015.06.009
S. Giraudet, P. Le Cloirec, Activated carbon filters for filtration–adsorption, in: Act. Carbon Fiber Text., Elsevier, 2017: pp. 211–243. 10.1016/B978-0-08-100660-3.00009-2.
Zhao, 2016, Fabrication and testing of zirconium-based nanoparticle-doped activated carbon fiber for enhanced arsenic removal in water, RSC Adv., 6, 27020, 10.1039/C5RA25030G
Singh, 2013, Graphene oxide as carboelectrocatalyst for in situ electrochemical oxidation and sensing of chemical warfare agent simulant, Sens. Actuators B Chem., 188, 1218, 10.1016/j.snb.2013.08.013
Huang, 2014, A graphene oxide membrane with highly selective molecular separation of aqueous organic solution, Angew. Chem. Int. Ed., 53, 6929, 10.1002/anie.201401061
Spitz Steinberg, 2017, Breathable vapor toxicant barriers based on multilayer graphene oxide, ACS Nano., 11, 5670, 10.1021/acsnano.7b01106
Yoo, 2017, Graphene and graphene oxide membranes for gas separation applications, Curr. Opin. Chem. Eng., 16, 39, 10.1016/j.coche.2017.04.004
Peng, 2020, Graphene oxide-based membrane as a protective barrier against toxic vapors and gases, ACS Appl. Mater. Interfaces., 12, 11094, 10.1021/acsami.0c00615
Giannakoudakis, 2016, Effect of GO phase in Zn(OH)2/GO composite on the extent of photocatalytic reactive adsorption of mustard gas surrogate, Appl. Catal. B Environ., 183, 37, 10.1016/j.apcatb.2015.10.014
Henych, 2019, Solar light decomposition of warfare agent simulant DMMP on TiO 2 /graphene oxide nanocomposites, Catal. Sci. Technol., 9, 1816, 10.1039/C9CY00059C
Singh, 2015, Zirconia/graphene oxide hybrid micromotors for selective capture of nerve agents, Chem. Mater., 27, 8162, 10.1021/acs.chemmater.5b03960
Šťastný, 2017, Graphene oxide/MnO 2 nanocomposite as destructive adsorbent of nerve-agent simulants in aqueous media, Appl. Surf. Sci., 412, 19, 10.1016/j.apsusc.2017.03.228
Deopura, 2015, Synthetic Textile Fibres, in, Text. Fash., Elsevier, 97, 10.1016/B978-1-84569-931-4.00005-2
Bunsell, 2018
R.R. Mather, Synthetic Textile Fibres, in: Text. Fash., Elsevier, 2015: pp. 115–138. 10.1016/B978-1-84569-931-4.00006-4.
Jiang, 2014, Highly flexible and tough concentric triaxial polystyrene fibers, ACS Appl. Mater. Interfaces., 6, 5918, 10.1021/am500837s
Szewczyk, 2020, Enhanced piezoelectricity of electrospun polyvinylidene fluoride fibers for energy harvesting, ACS Appl. Mater. Interfaces., 12, 13575, 10.1021/acsami.0c02578
Semino, 2018, Understanding the origins of metal–organic framework/polymer compatibility, Chem. Sci., 9, 315, 10.1039/C7SC04152G
Palomba, 2021, Strong, ductile MOF−Poly(urethane urea) composites, Chem Mater., 33, 3164, 10.1021/acs.chemmater.0c04874
Amid, 2016, Hybrid adsorbent nonwoven structures: a review of current technologies, J. Mater. Sci., 51, 4173, 10.1007/s10853-016-9741-x
Dou, 2020, Electrospinning of metal-organic frameworks for energy and environmental applications, Adv. Sci., 7, 1902590, 10.1002/advs.201902590
Ma, 2020, Fiber composites of metal-organic frameworks, Chem. Mater., 32, 7120, 10.1021/acs.chemmater.0c02379
Peterson, 2021, Fibre-based composites from the integration of metal–organic frameworks and polymers, Nat. Rev. Mater., 6, 605, 10.1038/s41578-021-00291-2
Greiner, 2007, Electrospinning: A fascinating method for the preparation of ultrathin fibers, Angew. Chem. Int. Ed., 46, 5670, 10.1002/anie.200604646
Zhang, 2014, Nanoparticles meet electrospinning: recent advances and future prospects, Chem. Soc. Rev., 43, 4423, 10.1039/c3cs60426h
Zhu, 2021, Transition metal sulfides meet electrospinning: versatile synthesis, distinct properties and prospective applications, Nanoscale., 13, 9112, 10.1039/D1NR01070K
Ostermann, 2011, Metal–organic framework nanofibers viaelectrospinning, Chem Commun., 47, 442, 10.1039/C0CC02271C
Rose, 2011, MOF processing by electrospinning for functional textiles, Adv. Eng. Mater., 13, 356, 10.1002/adem.201000246
Lange, 2014, CuBTC metal-organic frameworks enmeshed in polyacrylonitrile fibrous membrane remove methyl parathion from solutions, Fibers Polym., 15, 200, 10.1007/s12221-014-0200-5
Wahiduzzaman, 2017, Mujibur, Synthesis and Electrospraying of Nanoscale MOF (Metal Organic Framework) for High-Performance CO2 Adsorption Membrane, Nanoscale Res. Lett., 12, 6, 10.1186/s11671-016-1798-6
Zhang, 2016, Preparation of nanofibrous metal-organic framework filters for efficient air pollution control, J. Am. Chem. Soc., 138, 5785, 10.1021/jacs.6b02553
Hao, 2019, Electrospun polyimide/metal-organic framework nanofibrous membrane with superior thermal stability for efficient PM 2.5 capture, ACS Appl. Mater. Interfaces., 11, 11904, 10.1021/acsami.8b22415
Ren, 2015, Electrospun MOF nanofibers as hydrogen storage media, Int. J. Hydrog. Energy., 40, 9382, 10.1016/j.ijhydene.2015.05.088
Wang, 2019, MOF-based fibrous membranes adsorb PM efficiently and capture toxic gases selectively, Nanoscale., 11, 17782, 10.1039/C9NR05795A
Peterson, 2021, Metal–organic framework polymer composite enhancement via acyl chloride modification, Polym. Int., 70, 783, 10.1002/pi.6151
Asiabi, 2017, Electrospun biocompatible Chitosan/MIL-101 (Fe) composite nanofibers for solid-phase extraction of Δ9-tetrahydrocannabinol in whole blood samples using Box-Behnken experimental design, J. Chromatogr. A., 1479, 71, 10.1016/j.chroma.2016.12.024
Asiabi, 2017, Spider-web-like chitosan/MIL-68(Al) composite nanofibers for high-efficient solid phase extraction of Pb(II) and Cd(II), Microchim. Acta., 184, 4495, 10.1007/s00604-017-2473-z
Peterson, 2017, Tuning the morphology and activity of electrospun polystyrene/UiO-66-NH 2 metal-organic framework composites to enhance chemical warfare agent removal, ACS Appl. Mater. Interfaces., 9, 32248, 10.1021/acsami.7b09209
Li, 2017, Electrospun porous nanofibers for electrochemical energy storage, J. Mater. Sci., 52, 6173, 10.1007/s10853-017-0794-2
Dai, 2018, Morphology controlled porous poly(lactic acid)/zeolitic imidazolate framework-8 fibrous membranes with superior PM2.5 capture capacity, Chem. Eng. J., 338, 82, 10.1016/j.cej.2018.01.025
Armstrong, 2016, Hierarchical pore structures and high ZIF-8 loading on matrimid electrospun fibers by additive removal from a blended polymer precursor, Ind. Eng. Chem. Res., 55, 9944, 10.1021/acs.iecr.6b02479
Seo, 2020, Continuous flow composite membrane catalysts for efficient decomposition of chemical warfare agent simulants, ACS Appl. Mater. Interfaces., 12, 32778, 10.1021/acsami.0c08276
Xu, 2012, Electrospun nanofibrous mats as skeletons to produce MOF membranes for the detection of explosives, Mater. Lett., 87, 20, 10.1016/j.matlet.2012.07.076
Zhang, 2018, Ultrahigh metal-organic framework loading and flexible nanofibrous membranes for efficient CO 2 capture with long-term, ultrastable recyclability, ACS Appl. Mater. Interfaces., 10, 34802, 10.1021/acsami.8b14197
Wu, 2012, Electrospun fibrous mats as skeletons to produce free-standing MOF membranes, J. Mater. Chem., 22, 16971, 10.1039/c2jm32570e
Liu, Cai, Chan, Yu, Development and Applications of MOFs Derivative One-Dimensional Nanofibers via Electrospinning: A Mini-Review, Nanomaterials. 9 (2019) 1306. 10.3390/nano9091306.
Bian, 2018, Metal–organic framework-based nanofiber filters for effective indoor air quality control, J. Mater. Chem. A., 6, 15807, 10.1039/C8TA04539A
Talmoudi, 2018, An in situ crystal growth of metal organic frameworks-5 on electrospun PVA nanofibers, Autex Res. J., 18, 308, 10.1515/aut-2017-0024
Giannakoudakis, 2017, Smart textiles of MOF/g-C 3 N 4 nanospheres for the rapid detection/detoxification of chemical warfare agents, Nanoscale Horiz., 2, 356, 10.1039/C7NH00081B
Yu, 2019, A tightly-bonded and flexible mesoporous zeolite-cotton hybrid hemostat, Nat. Commun., 10, 1932, 10.1038/s41467-019-09849-9
Satya, 2012, Functionalized cellulose PET polymer fibers with zeolites for detoxification against nerve agents, J. Inorg. Mater., 27
Bunge, 2020, Ionic liquid welding of the UIO-66-NH 2 MOF to cotton textiles, Ind. Eng. Chem. Res., 59, 19285, 10.1021/acs.iecr.0c03763
Abdelhameed, 2019, Design of ZIF(Co & Zn)@wool composite for efficient removal of pharmaceutical intermediate from wastewater, J. Colloid Interface Sci., 552, 494, 10.1016/j.jcis.2019.05.077
Abdelhameed, 2017, Cu-BTC metal-organic framework natural fabric composites for fuel purification, Fuel Process. Technol., 159, 306, 10.1016/j.fuproc.2017.02.001
Emam, 2017, In-situ modification of natural fabrics by Cu-BTC MOF for effective release of insect repellent (N, N-diethyl-3-methylbenzamide), J. Porous Mater., 24, 1175, 10.1007/s10934-016-0357-y
Li, 2018, From powder to cloth: Facile fabrication of dense MOF-76(Tb) coating onto natural silk fiber for feasible detection of copper ions, Chem. Eng. J., 350, 637, 10.1016/j.cej.2018.05.144
Lu, 2018, Multi-functional finishing of cotton fabrics by water-based layer-by-layer assembly of metal–organic framework, Cellulose., 25, 4223, 10.1007/s10570-018-1838-8
Abdelhameed, 2018, Applicable strategy for removing liquid fuel nitrogenated contaminants using MIL-53-NH 2 @natural fabric composites, Ind. Eng. Chem. Res., 57, 15054, 10.1021/acs.iecr.8b03936
Yoo, 2019, Effect of functional groups of metal-organic frameworks, coated on cotton, on removal of particulate matters via selective interactions, ACS Appl. Mater. Interfaces., 11, 47649, 10.1021/acsami.9b19646
Khanjani, 2012, Layer by layer growth of nano porous lead(ii) coordination polymer on natural silk fibers and its application in removal and recovery of iodide, CrystEngComm., 14, 8137, 10.1039/c2ce25696g
Abbasi, 2015, Synthesis and characterization of TMU-16-NH2 metal-organic framework nanostructure upon silk fiber: Study of structure effect on morphine and methyl orange adsorption affinity, Fibers Polym., 16, 1193, 10.1007/s12221-015-1193-4
Abbasi, 2016, Synthesis and characterization of azine-functionalized zinc cation metal–organic frameworks nanostructures upon silk fibers under ultrasound irradiation, study of pores effect on morphine adsorption affinity, Colloids Surf. Physicochem. Eng. Asp., 498, 58, 10.1016/j.colsurfa.2016.02.038
Khanjani, 2014, Ultrasound-promoted coating of MOF-5 on silk fiber and study of adsorptive removal and recovery of hazardous anionic dye “congo red”, Ultrason. Sonochem., 21, 1424, 10.1016/j.ultsonch.2013.12.012
Zhang, 2017, Layer-by-layer assembly of Cu 3 (BTC) 2 on chitosan non-woven fabrics: a promising haemostatic decontaminant composite material against sulfur mustard, J. Mater. Chem. B., 5, 6138, 10.1039/C7TB01489A
Schelling, 2018, Decoration of Cotton Fibers with a Water-Stable Metal-Organic Framework (UiO-66) for the Decomposition and Enhanced Adsorption of Micropollutants in Water, Bioengineering., 5, 14, 10.3390/bioengineering5010014
Liu, 2019, Multifunctional Ag@MOF-5@chitosan non-woven cloth composites for sulfur mustard decontamination and hemostasis, Dalton Trans., 48, 6951, 10.1039/C9DT00503J
Laurila, 2015, Enhanced Synthesis of metal-organic frameworks on the surface of electrospun cellulose nanofibers: enhanced synthesis of metal-organic frameworks, Adv. Eng. Mater., 17, 1282, 10.1002/adem.201400565
Kalaj, 2020, Spray-coating of catalytically active MOF–polythiourea through postsynthetic polymerization, Angew. Chem. Int. Ed., 59, 13984, 10.1002/anie.202004205
Liu, 2016, General deposition of metal-organic frameworks on highly adaptive organic-inorganic hybrid electrospun fibrous substrates, ACS Appl. Mater. Interfaces., 8, 2552, 10.1021/acsami.5b10078
Zhang, 2019, Fabrication of 2D metal–organic framework nanosheet@fiber composites by spray technique, Chem. Commun., 55, 8293, 10.1039/C9CC02614B
Zhang, 2019, Textiles/metal–organic frameworks composites as flexible air filters for efficient particulate matter removal, ACS Appl. Mater. Interfaces., 11, 17368, 10.1021/acsami.9b01734
Song, 2020, Photothermal graphene/UiO-66-NH2 fabrics for ultrafast catalytic degradation of chemical warfare agent simulants, J. Hazard. Mater., 393, 10.1016/j.jhazmat.2020.122332
Centrone, 2010, Growth of metal−organic frameworks on polymer surfaces, J. Am. Chem. Soc., 132, 15687, 10.1021/ja106381x
Ma, 2019, Scalable and template-free aqueous synthesis of zirconium-based metal-organic framework coating on textile fiber, J. Am. Chem. Soc., 141, 15626, 10.1021/jacs.9b07301
Morgan, 2021, Stretchable and multi-metal–organic framework fabrics via high-yield rapid sorption-vapor synthesis and their application in chemical warfare agent hydrolysis, ACS Appl. Mater. Interfaces., 13, 31279, 10.1021/acsami.1c07366
Meilikhov, 2011, Stepwise deposition of metal organic frameworks on flexible synthetic polymer surfaces, Dalton Trans., 40, 4838, 10.1039/c0dt01820a
Qiu, 2020, A facile strategy for fabrication of HKUST-1 on a flexible polyethylene nonwoven fabric with a high MOF loading, Microporous Mesoporous Mater., 292, 10.1016/j.micromeso.2019.109723
Bunge, 2015, Modification of Fibers with Nanostructures Using Reactive Dye Chemistry, Ind. Eng. Chem. Res., 54, 3821, 10.1021/acs.iecr.5b00089
Yao, 2020, Bio-Inspired Polydopamine-Mediated Zr-MOF Fabrics for Solar Photothermal-Driven Instantaneous Detoxification of Chemical Warfare Agent Simulants, ACS Appl. Mater. Interfaces., 12, 18437, 10.1021/acsami.9b22242
Kalaj, 2019, Nylon–MOF Composites through Postsynthetic Polymerization, Angew. Chem. Int. Ed., 58, 2336, 10.1002/anie.201812655
Lee, 2017, UiO-66-NH 2 Metal-Organic Framework (MOF) Nucleation on TiO2, ZnO, and Al2O3 Atomic Layer Deposition-Treated Polymer Fibers: Role of Metal Oxide on MOF Growth and Catalytic Hydrolysis of Chemical Warfare Agent Simulants, ACS Appl. Mater. Interfaces., 9, 44847, 10.1021/acsami.7b15397
Zhao, 2015, Conformal and highly adsorptive metal–organic framework thin films via layer-by-layer growth on ALD-coated fiber mats, J. Mater. Chem. A., 3, 1458, 10.1039/C4TA05501B
Liu, 2019, A polydopamine-modified reduced graphene oxide (RGO)/MOFs nanocomposite with fast rejection capacity for organic dye, Chem. Eng. J., 359, 47, 10.1016/j.cej.2018.11.105
Zhou, 2015, A polydopamine layer as the nucleation center of MOF deposition on “inert” polymer surfaces to fabricate hierarchically structured porous films, Chem. Commun., 51, 2706, 10.1039/C4CC08796H
Zhao, 2016, Ultra-Fast Degradation of Chemical Warfare Agents Using MOF-Nanofiber Kebabs, Angew. Chem. Int. Ed., 55, 13224, 10.1002/anie.201606656
Lee, 2017, Catalytic “MOF-Cloth” Formed via Directed Supramolecular Assembly of UiO-66-NH 2 Crystals on Atomic Layer Deposition-Coated Textiles for Rapid Degradation of Chemical Warfare Agent Simulants, Chem. Mater., 29, 4894, 10.1021/acs.chemmater.7b00949
H.F. Barton, A.K. Davis, G.N. Parsons, The Effect of Surface Hydroxylation on MOF Formation on ALD Metal Oxides: MOF-525 on TiO 2 /Polypropylene for Catalytic Hydrolysis of Chemical Warfare Agent Simulants, ACS Appl. Mater. Interfaces. (2020) acsami.9b20910. 10.1021/acsami.9b20910.
Bai, 2015, Effects of surface chemical properties of activated carbon fibers modified by liquid oxidation for CO2 adsorption, Appl. Surf. Sci., 353, 158, 10.1016/j.apsusc.2015.06.046
Perrard, 2012, Liquid phase oxidation kinetics of an ex-cellulose activated carbon cloth by NaOCl, Carbon., 50, 2226, 10.1016/j.carbon.2012.01.039
Wang, 2019, A two-step method for the integrated removal of HCl, SO2 and NO at low temperature using viscose-based activated carbon fibers modified by nitric acid, Fuel., 239, 272, 10.1016/j.fuel.2018.11.002
Fallah, 2012, Removal of thiophenic compounds from liquid fuel by different modified activated carbon cloths, Fuel Process. Technol., 93, 45, 10.1016/j.fuproc.2011.09.012
Xu, 2006, Removal of SO2 from O2-containing flue gas by activated carbon fiber (ACF) impregnated with NH3, Chemosphere., 62, 823, 10.1016/j.chemosphere.2005.04.070
Mangun, 2001, Adsorption of sulfur dioxide on ammonia-treated activated carbon fibers, Carbon., 39, 1689, 10.1016/S0008-6223(00)00300-6
Park, 2004, Influence of oxygen plasma treatment on hydrogen chloride removal of activated carbon fibers, J. Colloid Interface Sci., 275, 590, 10.1016/j.jcis.2004.03.011
Okajima, 2005, Capacitance behavior of activated carbon fibers with oxygen-plasma treatment, Electrochimica Acta., 50, 2227, 10.1016/j.electacta.2004.10.005
Bai, 2016, N 2 plasma treatment on activated carbon fibers for toxic gas removal: Mechanism study by electrochemical investigation, Chem. Eng. J., 306, 260, 10.1016/j.cej.2016.07.046
Jung, 2009, Nitrogen and hydrogen adsorption of activated carbon fibers modified by fluorination, J. Ind. Eng. Chem., 15, 410, 10.1016/j.jiec.2008.11.001
Yao, 2013, In search of brominated activated carbon fibers for elemental mercury removal from power plant effluents, J. Mater. Chem. A., 1, 12103, 10.1039/c3ta11465a
Gao, 2016, Improved Energy Storage Performance Based on Gamma-Ray Irradiated Activated Carbon Cloth, Electrochimica Acta., 191, 908, 10.1016/j.electacta.2016.01.151
Park, 1999, Electrochemical treatment on activated carbon fibers for increasing the amount and rate of Cr(VI) adsorption, Carbon., 37, 1223, 10.1016/S0008-6223(98)00318-2
Tabti, 2014, Tailoring the Surface Chemistry of Activated Carbon Cloth by Electrochemical Methods, ACS Appl. Mater. Interfaces., 6, 11682, 10.1021/am502475v
Dai, 2016, Nanocrystalline MnO 2 on an activated carbon fiber for catalytic formaldehyde removal, RSC Adv., 6, 97022, 10.1039/C6RA15463H
Li, 2017, Synergetic effect between adsorption and photodegradation on nanostructured TiO2/activated carbon fiber felt porous composites for toluene removal, J. Hazard. Mater., 333, 88, 10.1016/j.jhazmat.2017.03.019
Bai, 2019, Activated carbon fibers for toxic gas removal based on electrical investigation: Mechanistic study of p-type/n-type junction structures, Sci. Rep., 9, 14458, 10.1038/s41598-019-50707-x
Kang, 2020, Fabrication of hollow activated carbon nanofibers (HACNFs) containing manganese oxide catalyst for toluene removal via two-step process of electrospinning and thermal treatment, Chem. Eng. J., 379, 10.1016/j.cej.2019.122315
Emamipour, 2015, Novel activated carbon fiber cloth filter with functionalized silica nanoparticles for adsorption of toxic industrial chemicals, Adsorption., 21, 265, 10.1007/s10450-015-9668-6
Huang, 2014, Characterization and mechanism analysis of activated carbon fiber felt-stabilized nanoscale zero-valent iron for the removal of Cr(VI) from aqueous solution, Colloids Surf. Physicochem. Eng. Asp., 447, 59, 10.1016/j.colsurfa.2014.01.037
Park, 2017, Assembly of PDMS/SiO 2 -PTFE and activated carbon fibre as a liquid water–resistant gas sorbent structure, Chem. Eng. J., 325, 433, 10.1016/j.cej.2017.05.088
Dadvar, 2012, The Removal of 2-Chloroethyl Ethyl Sulfide Using Activated Carbon Nanofibers Embedded with MgO and Al 2 O 3 Nanoparticles, J. Chem. Eng. Data., 57, 1456, 10.1021/je201328s
Dadvar, 2013, A study on the kinetics of 2-chloroethyl ethyl sulfide adsorption onto nanocomposite activated carbon nanofibers containing metal oxide nanoparticles, Sep. Purif. Technol., 114, 24, 10.1016/j.seppur.2013.04.019
Gil-San-Millan, 2021, Layer-by-Layer Integration of Zirconium Metal−Organic Frameworks onto Activated Carbon Spheres and Fabrics with Model Nerve Agent Detoxification Properties, ACS Appl, Mater. Interfaces., 10.1021/acsami.1c12095
Liu, 2016, Template-based Synthesis of a Formate Metal-Organic Framework/Activated Carbon Fiber Composite for High-performance Methane Adsorptive Separation, Chem. - Asian J., 11, 3014, 10.1002/asia.201601134
Fleker, 2016, Preparation and Properties of Metal Organic Framework/Activated Carbon Composite Materials, Langmuir., 32, 4935, 10.1021/acs.langmuir.6b00528
Muñoz-Senmache, 2020, Activated Carbon-Metal Organic Framework Composite for the Adsorption of Contaminants of Emerging Concern from Water, ACS Appl. Nano Mater., 3, 2928, 10.1021/acsanm.0c00190
McHugh, 2019, Metal-Organic Framework-Activated Carbon Composite Materials for the Removal of Ammonia from Contaminated Airstreams, Angew. Chem. Int. Ed., 58, 11747, 10.1002/anie.201905779
Soleimanpour, 2021, Modification of activated carbon by MIL-53(Al) MOF to develop a composite framework adsorbent for CO2 capturing, Environ. Sci. Pollut. Res., 28, 37929, 10.1007/s11356-021-13382-y
M. Sathe, P.K. Sharma, V.K. Singh, N.K. Tripathi, V. Verma, S.P. Sharma, L.N.S. Tomar, A. Chaturvedi, S.S. Yadav, V.B. Thakare, J. Acharya, A.K. Gupta, K. Ganesan, Chemical Protection Studies of Activated Carbon Spheres based Permeable Protective Clothing Against Sulfur Mustard, a Chemical Warfare Agent, Def. Sci. J. 69 (2019) 577–584. 10.14429/dsj.69.13958.
Mangun, 2001, Adsorption of Organic Contaminants from Water Using Tailored ACFs, Chem. Mater., 13, 2356, 10.1021/cm000880g
Giannakoudakis, 2018, Barium titanate perovskite nanoparticles as a photoreactive medium for chemical warfare agent detoxification, J. Colloid Interface Sci., 531, 233, 10.1016/j.jcis.2018.07.053
Giannakoudakis, 2020, Composite porous carbon textile with deposited barium titanate nanospheres as wearable protection medium against toxic vapors, Chem. Eng. J., 384, 10.1016/j.cej.2019.123280
Kowalczyk, 2013, Screening of carbonaceous nanoporous materials for capture of nerve agents, Phys Chem Chem Phys., 15, 291, 10.1039/C2CP43366D
Cataldo, 2018, Surface interaction and desorption of trimethyl phosphate from ozonized activated carbon fabric, Fuller. Nanotub. Carbon Nanostructures., 26, 379, 10.1080/1536383X.2018.1439933
Peterson, 2018, Flexible SIS/HKUST-1 Mixed Matrix Composites as Protective Barriers against Chemical Warfare Agent Simulants, ACS Appl. Mater. Interfaces., 10, 43080, 10.1021/acsami.8b16227
Pomerantz, 2019, Air, Water Vapor, and Aerosol Transport through Textiles with Surface Functional Coatings of Metal Oxides and Metal-Organic Frameworks, ACS Appl. Mater. Interfaces., 11, 24683, 10.1021/acsami.9b04091
López-Maya, 2015, Textile/Metal-Organic-Framework Composites as Self-Detoxifying Filters for Chemical-Warfare Agents, Angew. Chem. Int. Ed., 54, 6790, 10.1002/anie.201502094
Barton, 2020, Doubly-Protective MOF-Photo-Fabrics: Facile Template-Free Synthesis of PCN-222-Textiles Enables Rapid Hydrolysis, Photo-Hydrolysis and Selective Oxidation of Multiple Chemical Warfare Agents and Simulants, Chem Eur J., 26
Howarth, 2017, Postsynthetic Incorporation of a Singlet Oxygen Photosensitizer in a Metal-Organic Framework for Fast and Selective Oxidative Detoxification of Sulfur Mustard, Chem. - Eur. J., 23, 214, 10.1002/chem.201604972
Cheung, 2021, Immobilized regenerable active chlorine within a zirconium-based MOF textile composite to eliminate biological and chemical threats, J. Am. Chem. Soc., 143, 16777, 10.1021/jacs.1c08576
Chen, 2019, Toward base heterogenization: A zirconium metal-organic framework/dendrimer or polymer mixture for rapid hydrolysis of a nerve-agent simulant, ACS Appl. Nano Mater., 2, 1005, 10.1021/acsanm.8b02292
Chen, 2019, Integration of metal-organic frameworks on protective layers for destruction of nerve agents under relevant conditions, J. Am. Chem. Soc., 141, 20016, 10.1021/jacs.9b11172
Lu, 2017, MOFabric: electrospun nanofiber mats from PVDF/UiO-66-NH 2 for chemical protection and decontamination, ACS Appl. Mater. Interfaces., 9, 13632, 10.1021/acsami.7b01621
Lee, 2021, Highly breathable chemically-protective MOF-fiber catalysts, Adv. Funct. Mater., 2108004
Wang, 2019, Solid-phase detoxification of chemical warfare agents using zirconium-based metal organic frameworks and the moisture effects: analyze via digestion, ACS Appl. Mater. Interfaces., 11, 21109, 10.1021/acsami.9b04927
Yao, 2019, Photothermally enhanced detoxification of chemical warfare agent simulants using bioinspired core-shell dopamine–melanin@metal–organic frameworks and their fabrics, ACS Appl. Mater. Interfaces., 11, 7927, 10.1021/acsami.8b19445
Dwyer, 2018, Toxic organophosphate hydrolysis using nanofiber-templated UiO-66-NH 2 metal-organic framework polycrystalline cylinders, ACS Appl. Mater. Interfaces., 10, 25794, 10.1021/acsami.8b08167
McCarthy, 2017, Electrospun metal–organic framework polymer composites for the catalytic degradation of methyl paraoxon, New J. Chem., 41, 8748, 10.1039/C7NJ00525C
Dwyer, 2018, Chemical protective textiles of UiO-66-integrated PVDF composite fibers with rapid heterogeneous decontamination of toxic organophosphates, ACS Appl. Mater. Interfaces., 10, 34585, 10.1021/acsami.8b11290
M.C. de Koning, K. Ma, M. van Grol, I. Iordanov, M.J.L. Kruijne, K.B. Idrees, H. Xie, T. Islamoglu, R.P.T. Bross, O.K. Farha, Development of a Metal–Organic Framework/Textile Composite for the Rapid Degradation and Sensitive Detection of the Nerve Agent VX, Chem. Mater. (2022) acs.chemmater.1c03895. 10.1021/acs.chemmater.1c03895.
Moon, 2016, Detoxification of chemical warfare agents using a Zr6-based metal-organic framework polymer mixture, Chem Eur J., 22, 14864, 10.1002/chem.201603976
Luo, 2021, Rapid, biomimetic degradation of a nerve agent simulant byincorporating imidazole bases into a metal−organic framework, ACS Catal., 11, 1424, 10.1021/acscatal.0c04565
Gil-San-Millan, 2017, Chemical warfare agents detoxification properties of zirconium metal-organic frameworks by synergistic incorporation of nucleophilic and basic sites, ACS Appl. Mater. Interfaces., 9, 23967, 10.1021/acsami.7b06341
Hudiono, 2012, A highly breathable organic/inorganic barrier material that blocks the passage of mustard agent simulants, Ind. Eng. Chem. Res., 51, 7453, 10.1021/ie202977e