Porous polycrystals built up by uniformly and axisymmetrically oriented needles: homogenization of elastic properties
Tóm tắt
Từ khóa
Tài liệu tham khảo
[1] Hellmich, Ch.; Barthélémy, J.-F.; Dormieux, L. Mineral-collagen interactions in elasticity of bone ultrastructure—a continuum micromechanics approach, European Journal of Mechanics A—Solids, Volume 23 (2004), pp. 783-810
[2] Hellmich, Ch.; Ulm, F.-J. Are mineralized tissues open crystal foams reinforced by crosslinked collagen?—some energy arguments, Journal of Biomechanics, Volume 35 (2002), pp. 1199-1212
[3] Silyn-Roberts, H.; Sharp, R.M. Crystal growth and the role of the organic network in eggshell biomineralization, Proceedings of the Royal Society of London, Series B, Volume 227 (1986) no. 1248, pp. 303-324
[4] V. Baroughel-Bouny, Caractérisation des pâtes de ciment et des bétons—méthodes, analyse, interprétation (Characterization of cement pastes and concretes—methods, analysis, interpretations), Technical report, Laboratoire Central des Ponts et Chaussées, Paris, France, 1994 (in French)
[5] Chateau, X.; Dormieux, L. Micromechanics of saturated and unsaturated porous media, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 26 (2002), pp. 831-844
[6] Eshelby, J.D. The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proceedings of the Royal Society of London, Series A, Volume 241 (1957), pp. 376-396
[7] Suvorov, A.; Dvorak, G.J. Rate forms of the Eshelby and Hill tensors, International Journal of Solids Structures, Volume 39 (2002), pp. 5659-5678
[8] A. Zaoui, Matériaux hétérogènes et composites (Heterogeneous materials and composites), Lecture Notes from École Polytechnique, Palaiseau, France, 1997 (in French)
[9] Katz, J.K.; Ukraincik, K. On the anisotropic elastic properties of hydroxyapatite, Journal of Biomechanics, Volume 4 (1971), pp. 221-227
[10] Laws, N. The determination of stress and strain concentrations at an ellipsoidal inclusion in an anisotropic material, Journal of Elasticity, Volume 7 (1977) no. 1, pp. 91-97
[11] Weiner, S.; Wagner, H.D. The material bone: structure—mechanical function relations, Annual Review of Materials Science, Volume 28 (1998), pp. 271-298
[12] Fratzl, P.; Schreiber, S.; Klaushofer, K. Bone mineralization as studied by small-angle X-ray scattering, Connective Tissue Research, Volume 34 (1996) no. 4, pp. 247-254
[13] Sasaki, N. Orientation of mineral in bovine bone and the anisotropic mechanical properties of plexiform bone, Journal of Biomechanics, Volume 24 (1991), pp. 57-61
[14] Fratzl, P.; Fratzl-Zelman, N.; Klaushofer, K.; Vogl, G.; Koller, K. Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering, Calcified Tissue International, Volume 48 (1991), pp. 407-413
[15] Lees, S.; Ahern, J.M.; Leonard, M. Parameters influencing the sonic velocity in compact calcified tissues of various species, Journal of the Acoustical Society of America, Volume 74 (1983) no. 1, pp. 28-33
[16] Lees, S. Considerations regarding the structure of the mammalian mineralized osteoid from viewpoint of the generalized packing model, Connective Tissue Research, Volume 16 (1987), pp. 281-303
[17] Lees, S.; Page, E.A. A study of some properties of mineralized turkey leg tendon, Connective Tissue Research, Volume 28 (1992), pp. 263-287
[18] Peters, F.; Schwarz, K.; Epple, M. The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis, Thermochimica Acta, Volume 361 (2000), pp. 131-138
[19] Lees, S.; Heeley, J.D.; Cleary, P.F. A study of some properties of a sample of bovine cortical bone using ultrasound, Calcified Tissue International, Volume 29 (1979), pp. 107-117
[20] Laws, N. A note on penny-shaped cracks in transversely isotropic materials, Mechanics of Materials, Volume 4 (1985), pp. 209-212