Porous palladium phosphide nanotubes for formic acid electrooxidation

Carbon Energy - Tập 4 Số 3 - Trang 283-293 - 2022
Tianjiao Wang1, Yu‐Chuan Jiang1, Jiawei He1, Fumin Li1, Yu Ding1, Pei Chen1, Yu Chen1
1School of Materials Science and Engineering, Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology Shaanxi Normal University Xi'an China

Tóm tắt

Abstract

The development of an efficient catalyst for formic acid electrocatalytic oxidation reaction (FAEOR) is of great significance to accelerate the commercial application of direct formic acid fuel cells (DFAFC). Herein, palladium phosphide (PdxPy) porous nanotubes (PNTs) with different phosphide content (i.e., Pd3P and Pd5P2) are prepared by combining the self‐template reduction method of dimethylglyoxime‐Pd(II) complex nanorods and succedent phosphating treatment. During the reduction process, the self‐removal of the template and the continual inside–outside Ostwald ripening phenomenon are responsible for the generation of the one‐dimensional hollow and porous architecture. On the basis of the unique synthetic procedure and structural advantages, Pd3P PNTs with optimized phosphide content show outstanding electroactivity and stability for FAEOR. Importantly, the strong electronic effect between Pd and P promotes the direct pathway of FAEOR and inhibits the occurrence of the formic acid decomposition reaction, which effectively enhances the FAEOR electroactivity of Pd3P PNTs. In view of the facial synthesis, excellent electroactivity, high stability, and unordinary selectivity, Pd3P PNTs have the potential to be an efficient anode electrocatalyst for DFAFC.

Từ khóa


Tài liệu tham khảo

10.1126/science.aaw7493

10.1002/adma.201907879

10.1039/C9SE00460B

10.1039/D0TA08312G

10.1038/s41467-018-06043-1

10.1021/acscatal.1c00017

10.1002/cey2.38

10.1021/jacs.8b04852

10.1039/C7EE03361C

10.1002/anie.202000657

10.1039/D1TA01123E

10.1002/adfm.202003933

10.1002/anie.201914649

10.1002/aenm.201900955

10.1002/smll.201703940

10.1021/acsami.0c15074

10.1016/j.jechem.2019.02.015

10.1038/s41563-018-0167-5

10.1039/C8TA05710A

10.1016/j.jcat.2019.04.027

10.1016/j.apcatb.2019.118200

10.1021/acscatal.0c01537

10.1016/j.jpowsour.2019.227615

10.1016/j.jechem.2019.04.017

10.1002/anie.201810102

10.1016/j.apcatb.2020.119106

10.1021/ja068502l

10.1016/j.nanoen.2020.105166

10.1002/slct.201802628

10.1016/j.apcatb.2018.09.105

10.1016/j.cattod.2015.09.031

10.1016/j.nanoen.2016.10.023

10.1039/C5CC08669H

10.1002/adma.201502262

10.1002/smll.202005092

10.1002/adfm.202000255

10.1021/jacs.7b01482

10.1021/ar300254b

10.1002/adma.201602300

10.1002/adfm.202000534

10.1002/celc.201901939

10.1016/j.apcatb.2016.06.022

10.1002/adma.201601909

10.1016/j.cej.2019.123150

10.1021/acs.inorgchem.9b01976

10.1002/anie.201903290

10.1016/j.scib.2021.05.027

10.1016/j.electacta.2017.12.036

10.1002/adfm.202006317

10.1016/j.apcatb.2019.117854

10.1039/c3nr01578e

10.1039/D0NR02196B

10.1007/s12274-021-3471-3

10.1039/D0NR09164B

10.1021/acssuschemeng.0c03881

10.1016/j.apcatb.2019.03.072

10.1002/cctc.201901260

10.1002/smll.201804722

10.1002/anie.202008962

10.1021/acssuschemeng.8b04130