Porous hexagonal boron oxide monolayer with robust wide band gap: A computational study
Tài liệu tham khảo
Novoselov, 2004, Electric Field Effect in Atomically Thin Carbon Films, Science, 306, 666, 10.1126/science.1102896
Molle, 2017, Buckled Two-Dimensional Xene Sheets, Nat. Mater., 16, 163, 10.1038/nmat4802
Tang, 2013, Graphene-Analogous Low-Dimensional Materials, Prog. Mater. Sci., 58, 1244, 10.1016/j.pmatsci.2013.04.003
K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, 2D Materials and Van Der Waals Heterostructures, Science, 353 (2016) aac9439.
Balendhran, 2015, Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene, Small, 11, 640, 10.1002/smll.201402041
Xu, 2013, Graphene-Like Two-Dimensional Materials, Chem. Rev., 113, 3766, 10.1021/cr300263a
Wang, 2015, Atomically thin group V elemental films: theoretical investigations of antimonene allotropes, ACS Appl. Mater. & Inter., 7, 11490, 10.1021/acsami.5b02441
Kou, 2015, Phosphorene: Fabrication, Properties, and Applications, J. Phys. Chem. Lett., 6, 2794, 10.1021/acs.jpclett.5b01094
Butler, 2013, Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene, ACS Nano, 7, 2898, 10.1021/nn400280c
Tang, 2015, Innovation and Discovery of Graphene-Like Materials Via Density-Functional Theory Computations, Wires. Comput. Mol. Sci., 5, 360, 10.1002/wcms.1224
Zhao, 2016, Rise of Silicene: A Competitive 2D Material, Prog. Mater. Sci., 83, 24, 10.1016/j.pmatsci.2016.04.001
Guzmán-Verri, 2007, Electronic Structure of Silicon-Based Nanostructures, Phys. Rev. B, 76, 075131, 10.1103/PhysRevB.76.075131
Chen, 2012, Evidence for Dirac Fermions in a Honeycomb Lattice Based on Silicon, Phys. Rev. Lett., 109, 056804, 10.1103/PhysRevLett.109.056804
De Padova, 2013, Evidence of Dirac Fermions in Multilayer Silicene, Appl. Phys. Lett., 102, 163106, 10.1063/1.4802782
Durgun, 2005, Silicon and III-V Compound Nanotubes: Structural and Electronic Properties, Phys. Rev. B, 72, 075420, 10.1103/PhysRevB.72.075420
Rothlisberger, 1994, Structure of Nanoscale Silicon Clusters, Phys. Rev. Lett., 72, 665, 10.1103/PhysRevLett.72.665
Vogt, 2012, Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon, Phys. Rev. Lett., 108, 155501, 10.1103/PhysRevLett.108.155501
Cahangirov, 2013, Electronic Structure of Silicene on Ag (111): Strong Hybridization Effects, Phys. Rev. B, 88, 035432, 10.1103/PhysRevB.88.035432
Cahangirov, 2009, Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium, Phys. Rev. Lett., 102, 236804, 10.1103/PhysRevLett.102.236804
Takeda, 1994, Theoretical Possibility of Stage Corrugation in Si and Ge Analogs of Graphite, Phys. rev. B: Condens. Matter Mater. Phys., 50, 14916, 10.1103/PhysRevB.50.14916
Jing, 2014, Graphene, Inorganic Graphene Analogs and Their Composites for Lithium Ion Batteries, J. Mater. Chem. A, 2, 12104, 10.1039/C4TA01033G
Dávila, 2014, Germanene: A Novel Two-Dimensional Germanium Allotrope Akin to Graphene and Silicene, New J. Phys., 16, 095002, 10.1088/1367-2630/16/9/095002
Houssa, 2011, Electronic Properties of Hydrogenated Silicene and Germanene, Appl. Phys. Lett., 98, 223107, 10.1063/1.3595682
Li, 2014, Buckled Germanene Formation on Pt(111), Adv. Mater., 26, 4820, 10.1002/adma.201400909
Zhu, 2015, Epitaxial Growth of Two-Dimensional Stanene, Nat. Mater., 14, 1020, 10.1038/nmat4384
Tang, 2014, Stable Two-Dimensional Dumbbell Stanene: A Quantum Spin Hall Insulator, Phys. Rev. B, 90, 121408, 10.1103/PhysRevB.90.121408
Rachel, 2014, Giant Magnetoresistance and Perfect Spin Filter in Silicene, Germanene, and Stanene, Phys. Rev. B, 89, 195303, 10.1103/PhysRevB.89.195303
Gao, 2017, Interaction between Post-Graphene Group-IV Honeycomb Monolayers and Metal Substrates: Implication for Synthesis and Structure Control, J. Phys. Chem. C, 121, 5123, 10.1021/acs.jpcc.7b00023
Li, 2014, Black Phosphorus Field-Effect Transistors, Nat. Nanotechnol., 9, 372, 10.1038/nnano.2014.35
Churchill, 2014, Two-Dimensional Crystals: Phosphorus Joins the Family, Nat. Nanotechnol., 9, 330, 10.1038/nnano.2014.85
H. Liu, A.T. Neal, Z. Zhu, D. Tomanek, P.D. Ye, Phosphorene: A New 2D Material with High Carrier Mobility. arXiv preprint arXiv:1401.4133, 2014.
Carvalho, 2016, Phosphorene: From Theory to Applications, Nat. Rev. Mater., 1, 16061, 10.1038/natrevmats.2016.61
Jing, 2016, Phosphorene: What Can We Know from Computations?, Wires. Comput. Mol. S., 6, 5, 10.1002/wcms.1234
Fei, 2014, Strain-Engineering the Anisotropic Electrical Conductance of Few-Layer Black Phosphorus, Nano Lett., 14, 2884, 10.1021/nl500935z
Wang, 2015, Electro-Mechanical Anisotropy of Phosphorene, Nanoscale, 7, 9746, 10.1039/C5NR00355E
Zhang, 2015, Atomically Thin Arsenene and Antimonene: Semimetal-Semiconductor and Indirect-Direct Band-Gap Transitions, Angew. Chem. Int. Ed. Engl., 54, 3112, 10.1002/anie.201411246
Tsai, 2016, Direct Synthesis and Practical Bandgap Estimation of Multilayer Arsenene Nanoribbons, Chem. Mater., 28, 425, 10.1021/acs.chemmater.5b04949
Zhang, 2016, Semiconducting Group 15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities, Angew. Chem. Int. Ed. Engl., 55, 1666, 10.1002/anie.201507568
Tsai, 2016, The Advent of Multilayer Antimonene Nanoribbons with Room Temperature Orange Light Emission, Chem. Commun. (Camb), 52, 8409, 10.1039/C6CC02778D
Ares, 2016, Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions, Adv. Mater., 28, 6332, 10.1002/adma.201602128
Gibaja, 2016, Few-Layer Antimonene by Liquid-Phase Exfoliation, Angew. Chem., Int. Ed. Engl., 55, 14345, 10.1002/anie.201605298
Ji, 2016, Two-Dimensional Antimonene Single Crystals Grown by Van Der Waals Epitaxy, Nat. Commun., 7, 13352, 10.1038/ncomms13352
Tang, 2007, Novel Precursors for Boron Nanotubes: The Competition of Two-Center and Three-Center Bonding in Boron Sheets, Phys. Rev. Lett., 99, 115501, 10.1103/PhysRevLett.99.115501
Galeev, 2011, Deciphering the Mystery of Hexagon Holes in an All-Boron Graphene Alpha-Sheet, Phys. Chem. Chem. Phys., 13, 11575, 10.1039/c1cp20439d
Wu, 2012, Two-Dimensional Boron Monolayer Sheets, ACS Nano, 6, 7443, 10.1021/nn302696v
Penev, 2012, Polymorphism of Two-Dimensional Boron, Nano Lett., 12, 2441, 10.1021/nl3004754
Yu, 2012, Prediction of Two-Dimensional Boron Sheets by Particle Swarm Optimization Algorithm, J. Phys. Chem. C, 116, 20075, 10.1021/jp305545z
Zhang, 2015, Two-Dimensional Boron Monolayers Mediated by Metal Substrates, Angew. Chem., Int. Ed. Engl., 54, 13022, 10.1002/anie.201505425
Zhang, 2016, Substrate-Induced Nanoscale Undulations of Borophene on Silver, Nano Lett., 16, 6622, 10.1021/acs.nanolett.6b03349
Zhang, 2017, Elasticity, Flexibility, and Ideal Strength of Borophenes, Adv. Funct. Mater., 27
Feng, 2016, Experimental Realization of Two-Dimensional Boron Sheets, Nat. Chem., 8, 563, 10.1038/nchem.2491
Mannix, 2015, Synthesis of Borophenes: Anisotropic, Two-Dimensional Boron Polymorphs. Science, 350, 1513
Hall, 1965, Group IV Analogs and High Pressure, High Temperature Synthesis of B2O, Inorg. Chem., 4, 1213, 10.1021/ic50030a027
Endo, 1987, High-Pressure Synthesis of B2O with Diamond-Like Structure, J. Mater. Sci. Lett., 6, 683, 10.1007/BF01770925
Solozhenko, 2008, Phase Diagram of the β-B2O3 System at 5 Gpa: Experimental and Theoretical Studies, J. Phys. Chem. B, 112, 6683, 10.1021/jp800625s
Grumbach, 1995, Properties of B2O: An Unsymmetrical Analog of Carbon, Phys. Rev. B, 52, 15807, 10.1103/PhysRevB.52.15807
He, 2002, Boron Suboxide: As Hard as Cubic Boron Nitride, Appl. Phys. Lett., 81, 643, 10.1063/1.1494860
Hwang, 1997, Quantitative Study of the Short Range Order in B2O3 and B2S3 by Mas and Two-Dimensional Triple-Quantum MAS 11B NMR, Solid State Nucl. Mag., 8, 109, 10.1016/S0926-2040(96)01280-5
Ferlat, 2012, Hidden Polymorphs Drive Vitrification in B2O3, Nat. Mater., 11, 925, 10.1038/nmat3416
Youngman, 1995, Short-and Intermediate-Range Structural Ordering in Glassy Boron Oxide, Science, 269, 1416, 10.1126/science.269.5229.1416
Aziz, 1985, Crystal-Growth Kinetics of Boron-Oxide under Pressure, J. Appl. Phys., 57, 2233, 10.1063/1.334368
Putkonen, 2006, Atomic Layer Deposition of B2O3 Thin Films at Room Temperature, Thin Solid Films, 514, 145, 10.1016/j.tsf.2006.03.001
Ma, 2003, Self-Assembled Array of Boron Oxide Nanowires on Mg Surface, Chem. Phys. Lett., 374, 358, 10.1016/S0009-2614(03)00776-0
Cao, 2001, Well-Aligned Boron Nanowire Arrays, Adv. Mater., 13, 1701, 10.1002/1521-4095(200111)13:22<1701::AID-ADMA1701>3.0.CO;2-Q
Chen, 2017, Promoting Effect of Boron Oxide on Ag/SiO2 Catalyst for the Hydrogenation of Dimethyl Oxalate to Methyl Glycolate, Mol. Catal., 433, 346, 10.1016/j.mcat.2017.02.039
Ishak, 2017, Application of Boron Oxide as a Protective Surface Treatment to Decrease the Air Reactivity of Carbon Anodes, Metals, 7, 79, 10.3390/met7030079
Claeyssens, 2010, Design of Three-Dimensional Solid-State Boron Oxide Networks: Ab Initio Calculations Using Density Functional Theory, Phys. Rev. B, 82, 094119, 10.1103/PhysRevB.82.094119
Zhang, 2015, Pathways to the Polymerization of Boron Monoxide Dimer to Give Low-Density Porous Materials Containing Six-Membered Boroxine Rings, Inorg. Chem., 54, 2910, 10.1021/ic503036b
Tian, 2017, Double-Ring Tubular (B2O2) N Clusters (N= 6–42) Rolled up from the Most Stable BO Double-Chain Ribbon in Boron Monoxides, Phys. Chem. Chem. Phys., 19, 23213, 10.1039/C7CP04889K
Liu, 2017, Boron Monoxide Dimer as a Building Block for Boroxine Based Buckyballs and Related Cages: A Theoretical Study, Chem. Commun., 53, 3239, 10.1039/C6CC09489A
Zhang, 2017, Two-Dimensional Stoichiometric Boron Oxides as a Versatile Platform for Electronic Structure Engineering, J. Phys. Chem. Lett., 8, 4347, 10.1021/acs.jpclett.7b01721
Blöchl, 1994, Projector Augmented-Wave Method, Phys. rev. B: Condens. Matter Mater. Phys., 50, 17953, 10.1103/PhysRevB.50.17953
G. Kresse, J. Hafner, Ab Initio Molecular Dynamics for Liquid Metals, Phys. Rev. B. Condens. Matter Mater. Phys., 47 (1993) 558–561.
Heyd, 2003, Hybrid Functionals Based on a Screened Coulomb Potential, J. Chem. Phys., 118, 8207, 10.1063/1.1564060
C. Filippi, D.J. Singh, C.J. Umrigar, All-Electron Local-Density and Generalized-Gradient Calculations of the Structural Properties of Semiconductors, Phys Rev. B Condens. Matter Mater. Phys., 50 (1994), 14947–14951.
Segall, 2002, First-Principles Simulation: Ideas, Illustrations and the Castep Code, J. Phys. Condens. Matter, 14, 2717, 10.1088/0953-8984/14/11/301
Delley, 1990, An All-Electron Numerical-Method for Solving the Local Density Functional for Polyatomic-Molecules, J. Chem. Phys., 92, 508, 10.1063/1.458452
Delley, 2000, From Molecules to Solids with the Dmol3 Approach, J. Chem. Phys., 113, 7756, 10.1063/1.1316015
Wang, 2010, Crystal Structure Prediction Via Particle-Swarm Optimization, Phys. Rev. B, 82, 094116, 10.1103/PhysRevB.82.094116
Savin, 1997, Elf: The Electron Localization Function, Angew. Chem. Int. Ed., 36, 1809, 10.1002/anie.199718081
Wang, 2016, Semi-Metallic Be5C2 Monolayer Global Minimum with Quasi-Planar Pentacoordinate Carbons and Negative Poisson's Ratio, Nat. Commun., 7, 11488, 10.1038/ncomms11488
B. Peng, H. Zhang, H. Shao, Z. Ning, Y. Xu, G. Ni, H. Lu, D.W. Zhang, H. Zhu, Stability and Strength of Atomically Thin Borophene from First Principles Calculations, Mater. Res. Lett., (2017) 1–9.
Blase, 1995, Quasiparticle Band Structure of Bulk Hexagonal Boron Nitride and Related Systems, Phys. Rev. B Condens. Matter Mater. Phys., 51, 6868, 10.1103/PhysRevB.51.6868
Hoffman, 1984, Optical Properties of Pyrolytic Boron Nitride in the Energy Range 0.05—10 eV, Phys. Rev. B, 30, 6051, 10.1103/PhysRevB.30.6051
Watanabe, 2004, Direct-Bandgap Properties and Evidence for Ultraviolet Lasing of Hexagonal Boron Nitride Single Crystal, Nat. Mater., 3, 404, 10.1038/nmat1134
Golberg, 2010, Boron Nitride Nanotubes and Nanosheets, ACS nano, 4, 2979, 10.1021/nn1006495
Pakdel, 2014, Nano Boron Nitride Flatland, Chem. Soc. Rev., 43, 934, 10.1039/C3CS60260E
Kubota, 2007, Deep Ultraviolet Light-Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure, Science, 317, 932, 10.1126/science.1144216
Takahashi, 2007, 239