Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices

Nano Energy - Tập 26 - Trang 513-523 - 2016
Xiuqiang Xie1,2, Meng‐Qiang Zhao1, Babak Anasori1, Kathleen Maleski1, Chang E. Ren1, Jingwen Li1, Bryan W. Byles1, Ekaterina Pomerantseva1, Guoxiu Wang2, Yury Gogotsi1
1A. J. Drexel Nanomaterials Institute and, Materials Science and Engineering Department, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104 USA
2Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Yabuuchi, 2014, Chem. Rev., 114, 11636, 10.1021/cr500192f

Kundu, 2015, Angew. Chem. Int. Ed., 54, 3431, 10.1002/anie.201410376

Kim, 2012, Adv. Energy Mater., 2, 710, 10.1002/aenm.201200026

Gogotsi, 2014, ACS Nano, 8, 5369, 10.1021/nn503164x

Sangster, 2007, J. Phase Equilib. Diffr., 28, 571, 10.1007/s11669-007-9194-7

Jache, 2014, Angew. Chem. Int. Ed., 53, 10169, 10.1002/anie.201403734

Wen, 2014, Nat. Commun., 5, 4033, 10.1038/ncomms5033

Cao, 2012, Nano Lett., 12, 3783, 10.1021/nl3016957

Kim, 2013, Adv. Mater., 25, 3045, 10.1002/adma.201204877

Qian, 2013, Angew. Chem. Int. Ed., 52, 4633, 10.1002/anie.201209689

Song, 2014, Nano Lett., 14, 6329, 10.1021/nl502759z

Sun, 2015, Nat. Nanotechnol., 10, 980, 10.1038/nnano.2015.194

Wu, 2015, J. Mater. Chem. A, 3, 24221, 10.1039/C5TA08367B

Sun, 2016, Energy Storage Mater., 4, 130, 10.1016/j.ensm.2016.04.003

Mayo, 2016, Chem. Mater., 28, 2011, 10.1021/acs.chemmater.5b04208

Chevrier, 2011, J. Electrochem. Soc., 158, A1011, 10.1149/1.3607983

Zhu, 2013, Nano Lett., 3093, 10.1021/nl400998t

Xie, 2015, Nano Energy, 13, 208, 10.1016/j.nanoen.2015.02.022

Xie, 2015, ChemSusChem, 8, 2948, 10.1002/cssc.201500149

Darwiche, 2012, J. Am. Chem. Soc., 134, 20805, 10.1021/ja310347x

Qian, 2012, Chem. Commun., 48, 7070, 10.1039/c2cc32730a

Yu, 2013, Nat. Commun., 4, 2922, 10.1038/ncomms3922

Zhu, 2013, ACS Nano, 7, 6378, 10.1021/nn4025674

Wu, 2014, Energy Environ. Sci., 7, 323, 10.1039/C3EE42944J

Liu, 2015, Nano Energy, 16, 389, 10.1016/j.nanoen.2015.07.020

Park, 2013, Electrochim. Acta, 92, 427, 10.1016/j.electacta.2013.01.057

Hu, 2014, Angew. Chem. Int. Ed., 53, 12794, 10.1002/anie.201407898

Lin, 2014, Nat. Nanotechnol., 9, 391, 10.1038/nnano.2014.64

Wang, 2014, ACS Nano, 8, 11394, 10.1021/nn505501v

Zhu, 2014, Angew. Chem. Int. Ed., 53, 2152, 10.1002/anie.201308354

David, 2014, ACS Nano, 8, 1759, 10.1021/nn406156b

Wang, 2015, Nanoscale, 7, 637, 10.1039/C4NR05773B

Xie, 2016, Adv. Energy Mater., 6, 1502161, 10.1002/aenm.201502161

Xiong, 2011, J. Phys. Chem. Lett., 2, 2560, 10.1021/jz2012066

Kim, 2014, Nano Lett., 14, 416, 10.1021/nl402747x

Wang, 2013, Nat. Commun., 4, 2365, 10.1038/ncomms3365

Wang, 2015, Nano Energy, 13, 687, 10.1016/j.nanoen.2015.03.029

Gogotsi, 2012, Science, 335

Naguib, 2014, Adv. Mater., 26, 992, 10.1002/adma.201304138

Naguib, 2015, Acc. Chem. Res., 48, 128, 10.1021/ar500346b

Anasori, 2015, ACS Nano, 9, 9507, 10.1021/acsnano.5b03591

Lukatskaya, 2013, Science, 341, 1502, 10.1126/science.1241488

Boota, 2015, Adv. Mater., 28, 1517, 10.1002/adma.201504705

Tang, 2012, J. Am. Chem. Soc., 134, 16909, 10.1021/ja308463r

Naguib, 2013, J. Am. Chem. Soc., 135, 15966, 10.1021/ja405735d

Ren, 2016, ChemElectroChem, 3, 1, 10.1002/celc.201500551

Liang, 2015, Angew. Chem. Int. Ed., 54, 3907, 10.1002/anie.201410174

Mashtalir, 2014, J. Mater. Chem. A, 2, 14334, 10.1039/C4TA02638A

Li, 2014, Int. J. Hydrog. Energy, 39, 14927, 10.1016/j.ijhydene.2014.07.029

Wang, 2015, J. Electrochem. Soc., 162, B16, 10.1149/2.0371501jes

Yu, 2015, ACS Appl. Mater. Interfaces, 7, 13707, 10.1021/acsami.5b03737

Liu, 2016, Chem. Commun., 52, 705, 10.1039/C5CC08801A

Ren, 2015, J. Phys. Chem. Lett., 6, 4026, 10.1021/acs.jpclett.5b01895

Ghidiu, 2014, Nature, 516, 78, 10.1038/nature13970

Yang, 2015, Phys. Chem. Chem. Phys., 17, 5000, 10.1039/C4CP05140H

Er, 2014, ACS Appl. Mater. Interfaces, 6, 11173, 10.1021/am501144q

Xie, 2014, ACS Nano, 8, 9606, 10.1021/nn503921j

Wang, 2015, J. Am. Chem. Soc., 137, 2715, 10.1021/ja512820k

Wang, 2015, Nat. Commun., 6, 6544, 10.1038/ncomms7544

Eames, 2014, J. Am. Chem. Soc., 136, 16270, 10.1021/ja508154e

Dall’Agnese, 2015, J. Phys. Chem. Lett., 6, 2305, 10.1021/acs.jpclett.5b00868

Zhao, 2015, Adv. Mater., 27, 339, 10.1002/adma.201404140

Wang, 2016, Chem. Mater., 28, 349, 10.1021/acs.chemmater.5b04250

Zhang, 2008, Carbon, 46, 1152, 10.1016/j.carbon.2008.04.017

Komaba, 2011, ACS Appl. Mater. Interfaces, 3, 4165, 10.1021/am200973k

Vogt, 2015, Chem. Mater., 27, 1210, 10.1021/cm5039649

Sauvage, 2007, Inorg. Chem., 46, 3289, 10.1021/ic0700250

Wang, 2007, J. Phys. Chem. C, 111, 14925, 10.1021/jp074464w

Xie, 2014, J. Am. Chem. Soc., 136, 6385, 10.1021/ja501520b

Kajiyama, 2016, ACS Nano, 10, 3334, 10.1021/acsnano.5b06958

Yu, 2016, J. Phys. Chem. C., 120, 5288, 10.1021/acs.jpcc.5b10366

Lotfabad, 2014, ACS Nano, 8, 7115, 10.1021/nn502045y

Li, 2014, Nanoscale, 6, 693, 10.1039/C3NR05022J

Wang, 2016, Adv. Energy Mater., 6, 1502217, 10.1002/aenm.201502217

Zhan, 2015, J. Electrochem. Soc., 162, A1028, 10.1149/2.0891506jes

Halim, 2016, Adv. Funct. Mater., 26, 3118, 10.1002/adfm.201505328