Porous heterostructure of h-BN/carbon as an efficient electrocatalyst for hydrogen peroxide generation

Xiang Xu1, Yuying Zhao2, Qixin Yuan1, Yuhan Wu1, Jiawei He1, Mengmeng Fan1,2
1Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
2Key Lab of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China

Tóm tắt

We successfully synthesized a porous carbon material with abundant hexagonal boron nitride (h-BN) dispersed on a carbon matrix (p-BN-C) as efficient electrocatalysts for two-electron oxygen reduction reaction (2e− ORR) to produce hydrogen peroxide (H2O2). This catalyst was fabricated via ball-milling-assisted h-BN exfoliation and subsequent growth of carbon structure. In alkaline solutions, the h-BN/carbon heterostructure exhibited superior electrocatalytic activity for H2O2 generation measured by a rotating ring-disk electrode (RRDE), with a remarkable selectivity of up to 90–97% in the potential range of 0.3–0.6 V vs reversible hydrogen electrode (RHE), superior to most of the reported carbon-based electrocatalysts. Density functional theory (DFT) simulations indicated that the B atoms at the h-BN heterostructure interface were crucial active sites. These results underscore the remarkable catalytic activity of heterostructure and provide a novel approach for tailoring carbon-based catalysts, enhancing the selectivity and activity in the production of H2O2 through heterostructure engineering.

Từ khóa


Tài liệu tham khảo

Sun Y, Han L, Strasser P (2020) A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production. Chem Soc Rev 49:6605–6631. https://doi.org/10.1039/d0cs00458h Shi X, Back S, Gill TM, Siahrostami S, Zheng X (2021) Electrochemical synthesis of H2O2 by two-electron water oxidation reaction. Chem 7:38–63. https://doi.org/10.1016/j.chempr.2020.09.013 Campos-Martin JM, Blanco-Brieva G, Fierro JL (2006) Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew Chem Int Ed 45:6962–6984. https://doi.org/10.1002/anie.200503779 Xu S, Lu R, Sun K, Tang J, Cen Y, Luo L, Wang Z, Tian S, Sun X (2022) Synergistic effects in N, O-comodified carbon nanotubes boost highly selective electrochemical oxygen reduction to H2O2. Adv Sci 9:e2201421. https://doi.org/10.1002/advs.202201421 Zhou Y, Chen G, Zhang J (2020) A review of advanced metal-free carbon catalysts for oxygen reduction reactions towards the selective generation of hydrogen peroxide. J Mater Chem A 8:20849–20869. https://doi.org/10.1039/d0ta07900f Pizzutilo E, Kasian O, Choi CH, Cherevko S, Hutchings GJ, Mayrhofer KJJ, Freakley SJ (2017) Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanoparticles: from fundamentals to continuous production. Chem Phys Lett 683:436–442. https://doi.org/10.1016/j.cplett.2017.01.071 Slanac DA, Hardin WG, Johnston KP, Stevenson KJ (2012) Atomic ensemble and electronic effects in Ag-rich AgPd nanoalloy catalysts for oxygen reduction in alkaline media. J Am Chem Soc 134:9812–9819. https://doi.org/10.1021/ja303580b Siahrostami S, Verdaguer-Casadevall A, Karamad M, Deiana D, Malacrida P, Wickman B, Escudero-Escribano M, Paoli EA, Frydendal R, Hansen TW, Chorkendorff I, Stephens IE, Rossmeisl J (2013) Enabling direct H2O2 production through rational electrocatalyst design. Nat Mater 12:1137–1143. https://doi.org/10.1038/nmat3795 Sheng H, Hermes ED, Yang X, Ying D, Janes AN, Li W, Schmidt JR, Jin S (2019) Electrocatalytic production of H2O2 by selective oxygen reduction using earth-abundant cobalt pyrite (CoS2). ACS Catal 9:8433–8442. https://doi.org/10.1021/acscatal.9b02546 Zhang L, Ren Y, Liu W, Wang A, Zhang T (2018) Single-atom catalyst: a rising star for green synthesis of fine chemicals. Nat Sci Rev 5:653–672. https://doi.org/10.1093/nsr/nwy077 Zhao Y, Raj J, Xu X, Jiang J, Wu J, Fan M (2024) Carbon catalysts empowering sustainable chemical synthesis via electrochemical CO2 conversion and two-electron oxygen reduction reaction. Small. https://doi.org/10.1002/smll.202311163 Zhang J-Y, Xia C, Wang H-F, Tang C (2022) Recent advances in electrocatalytic oxygen reduction for on-site hydrogen peroxide synthesis in acidic media. J Energy Chem 67:432–450. https://doi.org/10.1016/j.jechem.2021.10.013 Fan M, Wang Z, Sun K, Wang A, Zhao Y, Yuan Q, Wang R, Raj J, Wu J, Jiang J, Wang L (2023) N-B-OH site-activated graphene quantum dots for boosting electrochemical hydrogen peroxide production. Adv Mater 35:e2209086. https://doi.org/10.1002/adma.202209086 Yuan Q, Fan M, Zhao Y, Wu J, Raj J, Wang Z, Wang A, Sun H, Xu X, Wu Y, Sun K, Jiang J (2023) Facile fabrication of carbon dots containing abundant h-BN/graphite heterostructures as efficient electrocatalyst for hydrogen peroxide synthesis. Appl Catal B 324:122195. https://doi.org/10.1016/j.apcatb.2022.122195 Fan M, Wu J, Yuan J, Deng L, Zhong N, He L, Cui J, Wang Z, Behera SK, Zhang C, Lai J, Jawdat BI, Vajtai R, Deb P, Huang Y, Qian J, Yang J, Tour JM, Lou J, Chu CW, Sun D, Ajayan PM (2019) Doping nanoscale graphene domains improves magnetism in hexagonal boron nitride. Adv Mater 31:e1805778. https://doi.org/10.1002/adma.201805778 Shi Y, Hamsen C, Jia X, Kim KK, Reina A, Hofmann M, Hsu AL, Zhang K, Li H, Juang Z-Y, Dresselhaus MS, Li L-J, Kong J (2010) Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett 10:4134–4139. https://doi.org/10.1021/nl1023707 Zhang Y, Lin Y, Duan T, Song L (2021) Interfacial engineering of heterogeneous catalysts for electrocatalysis. MaterToday 48:115–134. https://doi.org/10.1016/j.mattod.2021.02.004 Zhao Y, Xu X, Yuan Q, Wu Y, Sun K, Li B, Wang Z, Wang A, Sun H, Fan M, Jiang J (2023) Interfacial engineering of a vertically stacked graphene/h-BN heterostructure as an efficient electrocatalyst for hydrogen peroxide synthesis. Mater Horiz 10:4930–4939. https://doi.org/10.1039/d3mh00545c Fan M, Wang Z, Zhao Y, Yuan Q, Cui J, Raj J, Sun K, Wang A, Wu J, Sun H, Li B, Wang L, Jiang J (2022) Porous heterostructure of graphene/hexagonal boron nitride as an efficient electrocatalyst for hydrogen peroxide generation. Carbon Energy 5:e309. https://doi.org/10.1002/cey2.309 Zhang T, Wang Y, Li X, Zhuang Q, Zhang Z, Zhou H, Ding Q, Wang Y, Dang Y, Duan L, Liu J (2023) Charge state modulation on boron site by carbon and nitrogen localized bonding microenvironment for two-electron electrocatalytic H2O2 production. Chin Chem Lett 34:107596. https://doi.org/10.1016/j.cclet.2022.06.019 Lei W, Portehault D, Dimova R, Antonietti M (2011) Boron carbon nitride nanostructures from salt melts: tunable water-soluble phosphors. J Am Chem Soc 133:7121–7127. https://doi.org/10.1021/ja200838c Gao M, Wang Z-Y, Yuan Y-R, Li W-W, Liu H-Q, Huang T-Y (2022) Ball-milled biochar for efficient neutral electrosynthesis of hydrogen peroxide. Chem Eng J 434:134788. https://doi.org/10.1016/j.cej.2022.134788 Hod O (2012) Graphite and hexagonal boron-nitride have the same interlayer distance. Why? J Chem Theory Comput 8:1360–1369. https://doi.org/10.1021/ct200880m Wang L, Wang Y, Xu T, Liao H, Yao C, Liu Y, Li Z, Chen Z, Pan D, Sun L, Wu M (2014) Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat Commun 5:5357. https://doi.org/10.1038/ncomms6357 Fukamachi S, Solís-Fernández P, Kawahara K, Tanaka D, Otake T, Lin Y-C, Suenaga K, Ago H (2023) Large-area synthesis and transfer of multilayer hexagonal boron nitride for enhanced graphene device arrays. Nat Electron 6:126–136. https://doi.org/10.1038/s41928-022-00911-x Wang S, Ye D, Liu H, Zhu X, Liu Z, Chen R, Liao Q, Yang Y (2022) Natural bamboo-derived O-doped rocky electrocatalyst for high-efficiency electrochemical reduction of O2 to H2O2. Int J Hydrogen Energy 47:5961–5973. https://doi.org/10.1016/j.ijhydene.2021.11.218 Zheng R, Meng Q, Zhang H, Li T, Yang D, Zhang L, Jia X, Liu C, Zhu J, Duan X, Xiao M, Xing W (2024) Atomically dispersed Fe sites on hierarchically porous carbon nanoplates for oxygen reduction reaction. J Energy Chem 90:7–15. https://doi.org/10.1016/j.jechem.2023.10.045 Fan M, Jimenez JD, Shirodkar SN, Wu J, Chen S, Song L, Royko MM, Zhang J, Guo H, Cui J, Zuo K, Wang W, Zhang C, Yuan F, Vajtai R, Qian J, Yang J, Yakobson BI, Tour JM, Lauterbach J, Sun D, Ajayan PM (2019) Atomic Ru immobilized on porous h-BN through simple vacuum filtration for highly active and selective CO2 methanation. ACS Catal 9:10077–10086. https://doi.org/10.1021/acscatal.9b02197 Wu Y, Yuan Q, Zhao Y, Xu X, Xu J, Wang Y, Sun K, Wang A, Sun H, Li B, Xu R, Wang Z, Jiang J, Fan M (2023) Boron-sulfur pairs for highly active 2e− oxygen reduction reaction to electrochemically synthesize hydrogen peroxide. ACS Sustain Chem Eng 11:13363–13373. https://doi.org/10.1021/acssuschemeng.3c02620 Li Q, Liu M, Zhang Y, Liu Z (2016) Hexagonal boron nitride-graphene heterostructures: synthesis and interfacial properties. Small 12:32–50. https://doi.org/10.1002/smll.201501766 Fan M, Zhu C, Yang J, Sun D (2016) Facile self-assembly N-doped graphene quantum dots/graphene for oxygen reduction reaction. Electrochim Acta 216:102–109. https://doi.org/10.1016/j.electacta.2016.09.014 Jung E, Shin H, Lee BH, Efremov V, Lee S, Lee HS, Kim J, Hooch Antink W, Park S, Lee KS, Cho SP, Yoo JS, Sung YE, Hyeon T (2020) Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat Mater 19:436–442. https://doi.org/10.1038/s41563-019-0571-5 Lu Z, Chen G, Siahrostami S, Chen Z, Liu K, Xie J, Liao L, Wu T, Lin D, Liu Y, Jaramillo TF, Nørskov JK, Cui Y (2018) High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat Catal 1:156–162. https://doi.org/10.1038/s41929-017-0017-x Li Z, Kumar A, Liu N, Cheng M, Zhao C, Meng X, Li H, Zhang Y, Liu Z, Zhang G, Sun X (2022) Oxygenated P/N co-doped carbon for efficient 2e- oxygen reduction to H2O2. J Mater Chem A 10:14355–14363. https://doi.org/10.1039/d2ta02590f Xiang F, Zhao X, Yang J, Li N, Gong W, Liu Y, Burguete-Lopez A, Li Y, Niu X, Fratalocchi A (2022) Enhanced selectivity in the electroproduction of H2O2 via F/S dual-doping in metal-free nanofibers. Adv Mater 35:2207533. https://doi.org/10.1002/adma.202208533 Fan M, Xu J, Wang Y, Yuan Q, Zhao Y, Wang Z, Jiang J (2022) CO2 laser-induced graphene with an appropriate oxygen species as an efficient electrocatalyst for hydrogen peroxide synthesis. Chemistry 28:e202201996. https://doi.org/10.1002/chem.202201996 Deng Z, Gong M, Gong Z, Wang X (2022) Mesoscale mass transport enhancement on well-defined porous carbon platform for electrochemical H2O2 synthesis. Nano Lett 22:9551–9558. https://doi.org/10.1021/acs.nanolett.2c03696 Liu L, Kang L, Chutia A, Feng J, Michalska M, Ferrer P, Grinter DC, Held G, Tan Y, Zhao F, Guo F, Hopkinson DG, Allen CS, Hou Y, Gu J, Papakonstantinou I, Shearing PR, Brett DJL, Parkin IP, He G (2023) Spectroscopic identification of active sites of oxygen-doped carbon for selective oxygen reduction to hydrogen peroxide. Angew Chem Int Ed 62:e202303525. https://doi.org/10.1002/anie.202303525 Fan M, Yuan Q, Zhao Y, Wang Z, Wang A, Liu Y, Sun K, Wu J, Wang L, Jiang J (2022) A facile, “double-catalysts” approach to directionally fabricate pyridinic N‧B-pair-doped crystal graphene nanoribbons/amorphous carbon hybrid electrocatalysts for efficient oxygen reduction reaction. Adv Mater 34:2107040. https://doi.org/10.1002/adma.202107040 Ding G, Li C, Liu W, Zhao X, Jiang Y, Lu Y (2022) Enhanced H2O2 electrosynthesis on kneading oxidized carbon nanotubes. Appl Surf Sci 580:152293. https://doi.org/10.1016/j.apsusc.2021.152293 Watanabe K, Taniguchi T, Niiyama T, Miya K, Taniguchi M (2009) Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride. Nat Photonics 3:591–594. https://doi.org/10.1038/nphoton.2009.167 Tian Q, Jing L, Chen Y, Su P, Tang C, Wang G, Liu J (2022) Micelle-templating interfacial self-assembly of two-dimensional mesoporous nanosheets for sustainable H2O2 electrosynthesis. Sustain Mater Technol 32:e00398. https://doi.org/10.1016/j.susmat.2022.e00398 Jiang K, Back S, Akey AJ, Xia C, Hu Y, Liang W, Schaak D, Stavitski E, Norskov JK, Siahrostami S, Wang H (2019) Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat Commun 10:3997. https://doi.org/10.1038/s41467-019-11992-2 Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56:9–35. https://doi.org/10.1016/j.apcatb.2004.06.021 Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skulason E, Bligaard T, Norskov JK (2007) Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett 99:016105. https://doi.org/10.1103/PhysRevLett.99.016105 Lee D, Gan YX, Chen X, Kysar JW (2007) Influence of ultrasonic irradiation on the microstructure of Cu/Al2O3, CeO2 nanocomposite thin films during electrocodeposition. Mater Sci Eng 447:209–216. https://doi.org/10.1016/j.msea.2006.11.009 Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Nørskov JK (2010) How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci 3:1311–1315. https://doi.org/10.1039/c0ee00071j