Porous Tubular Scaffolds for Tissue Engineering Structures of Small Diameter Blood Vessels

Inorganic Materials: Applied Research - Tập 14 - Trang 400-407 - 2024
E. A. Nemets1, V. A. Surguchenko1, V. Yu. Belov2, A. I. Xajrullina3, V. I. Sevastyanov1
1Shumakov Federal Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, Moscow, Russia
2ANO Institute of Biomedical Research and Technology, Moscow, Russia
3Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia

Tóm tắt

A technology for the formation of porous tubular polymer scaffolds (PTPS) made of polycaprolactone (PCL) with the necessary physical and mechanical characteristics (Young’s modulus of 5.5 ± 1.1 MPa, tensile strength of 10.9 ± 1.6 N, and maximum elongation 477 ± 38%) has been developed. Samples obtained by electrospinning from 2 mL of a 10% PCL solution in dichloromethane (voltage between electrodes of 25 kV, solution delivery rate of 4 mL/h, distance to the collector of 100 mm, rotation speed of the substrate rod of 1000 rpm) showed a minimum surgical permeability of 30.4 ± 1.5 mL/(cm2 min). It is proved that the proposed bioactive coating based on heparin and platelet lysate does not affect the surface structure and physical and mechanical characteristics of the scaffold. It has been shown in vitro that samples of modified PTPS do not exhibit cytotoxicity and hemolytic activity, and improvement of hemocompatible properties occurs owing to a decrease in the number and degree of activation of adhered platelets.

Tài liệu tham khảo

Pashneh-Tala, S., MacNeil, S., and Claeyssens, F., The tissue-engineered vascular graft-past, present, and future, Tissue Eng., Part B, 2016, vol. 22, no. 1, pp. 68–100. https://doi.org/10.1089/ten.teb.2015.0100 Leal, B.B.J., Wakabayashi, N., Oyama, K., Kamiya, H., Braghirolli, D.I., and Pranke, P., Vascular tissue engineering: Polymers and methodologies for small caliber vascular grafts, Front. Cardiovasc. Med., 2021, vol. 7, p. 592361. https://doi.org/10.3389/fcvm.2020.592361 Zhang, Q., Bosch-Rué, È., Pérez, R.A., and Truskey, G.A., Biofabrication of tissue engineering vascular systems, APL Bioeng., 2021, vol. 5, no. 2, p. 021507. https://doi.org/10.1063/5.0039628 Durán-Rey, D., Crisóstomo, V., Sánchez-Margallo, J.A., and Sánchez-Margallo, F.M., Systematic review of tissue-engineered vascular grafts, Front. Bioeng. Biotechnol., 2021, vol. 9, pp. 1059–1074. https://doi.org/10.3389/fbioe.2021.771400 Dimopoulos, A., Markatos, D.N., Mitropoulou, A., Panagiotopoulos, I., Koletsis, E., and Mavrilas, D., A novel polymeric fibrous microstructured biodegradable small-caliber tubular scaffold for cardiovascular tissue engineering, J. Mater. Sci.: Mater. Med., 2021, vol. 32, no. 2, p. 21. https://doi.org/10.1007/s10856-021-06490-1 Carrabba, M. and Madeddu, P., Current strategies for the manufacture of small size tissue engineering vascular grafts, Front. Bioeng. Biotechnol., 2018, vol. 6, pp. 41–53. https://doi.org/10.3389/fbioe.2018.00041 Ju, Y.M., Ahn, H., Arenas-Herrera, J., Kim, C., Abolbashari, M., Atala, A., Yoo, J.J., and Lee, S.J., Electrospun vascular scaffold for cellularized small diameter blood vessels: A preclinical large animal study, Acta Biomater., 2017, vol. 59, pp. 58–67. https://doi.org/10.1016/j.actbio.2017.06.027 Antonova, L.V., Matveeva, V.G., and Barbarash, L.S., Electrospinning and biodegradable small-diameter vascular grafts: Problems and solutions (review), Kompl. Probl. Serdechno-Sosud. Zabol., 2015, no. 3, pp. 12–22. https://doi.org/10.17802/2306-1278-2015-3-12-22 Sevast’yanov, V.I. and Kirpichnikov, M.P., Biosovmestimye materialy (Biocompatible Materials), Moscow: Med. Inform. Agentstvo, 2011. Zavan, B., Gardin, C., Guarino, V., Rocca, T., Cruz Maya, I., Zanotti, F., Ferroni, L., Brunello, G., Chachques, J.C., Ambrosio, L., and Gasbarro, V., Electrospun PCL-based vascular grafts: In vitro tests, Nanomaterials (Basel), 2021, vol. 11, no. 3, p. 751. https://doi.org/10.3390/nano11030751 Wang, D., Xu, Y., Li, Q., and Turng, L.S., Artificial small-diameter blood vessels: Materials, fabrication, surface modification, mechanical properties, and bioactive functionalities, J. Mater. Chem. B., 2020, vol. 8, no. 9, pp. 1801–1822. https://doi.org/10.1039/c9tb01849b Bertram, U., Steiner, D., Poppitz, B., Dippold, D., Köhn, K., Beier, J.P., Detsch, R., Boccaccini, A.R., Schubert, D.W., Horch, R.E., and Arkudas, A., Vascular tissue engineering: Effects of integrating collagen into a PCL based nanofiber material, Biomed. Res. Int., 2017, vol. 2017, p. 9616939. https://doi.org/10.1155/2017/9616939 Rickel, A.P., Deng, X., Engebretson, D., and Hong, Z., Electrospun nanofiber scaffold for vascular tissue engineering, Mater. Sci. Eng., C, 2021, vol. 129, p. 112373. https://doi.org/10.1016/j.msec.2021.112373 Nemets, E.A., Belov, V.Yu., Ilina, T.S., Surguchenko, V.A., Pankina, A.P., and Sevastianov, V.I., Composite porous tubular biopolymer matrix of small diameter, Inorg. Mater.: Appl. Res., 2019, vol. 10, no. 2, pp. 365–372. Haghjooy, J.S., Anari, J., Zargar, K.A., and Vatankhah, E., In vitro hemocompatibility and cytocompatibility of a three-layered vascular scaffold fabricated by sequential electrospinning of PCL, collagen, and PLLA nanofibers, J. Biomater. Appl., 2016, vol. 31, no. 3, pp. 438–439. https://doi.org/10.1177/0885328216652068 Emechebe, G.A., Obiweluozor, F.O., Jeong, I.S., Park, J.K., Park, C.H., and Kim, C.S., Merging 3D printing with electrospun biodegradable small-caliber vascular grafts immobilized with VEGF, Nanomedicine, 2020, vol. 30, p. 102306. https://doi.org/10.1016/j.nano.2020.102306 Mohan, T., Nagaraj, C., Nagy, B.M., Bračič, M., Maver, U., Olschewski, A., Stana Kleinschek, K., and Kargl, R., Nano- and micropatterned polycaprolactone cellulose composite surfaces with tunable protein adsorption, fibrin clot formation and endothelial cellular response, Biomacromolecules, 2019, vol. 20, pp. 2327–2337. https://doi.org/10.1021/acs.biomac.9b00304 Surguchenko, V.A., Nemets, E.A., Belov, V.Yu., and Sevast’yanov, V.I., Bioactive coating for tissue-engineered small-diameter vascular grafts, Vestn. Transplantol. Iskuss. Organ., 2021, vol. 23, no. 4, pp. 119–131. https://doi.org/10.15825/25/1995-1191-2021-4-119-131 Smith, R.J., Jr., Yi, T., Nasiri, B., Breuer, C.K., and Andreadis, S.T., Implantation of VEGF-functionalized cell-free vascular grafts: Regenerative and immunological response, FASEB J., 2019, vol. 33, no. 4, pp. 5089–5100. https://doi.org/10.1096/fj.201801856R Meftahpour, V., Malekghasemi, S., Baghbanzadeh, A., Aghebati-Maleki, A., Pourakbari, R., Fotouhi, A., and Aghebati-Maleki, L., Platelet lysate: A promising candidate in regenerative medicine, Regener. Med., 2021, vol. 16, no. 1, pp. 71–85. https://doi.org/10.2217/rme-2020-0065 Sergeeva, N.S., Shanskii, Ya.D., Sviridova, I.K., Kirsanova, V.A., Akhmedova, S.A., Kuvshinova, E.A., and Meisner, I.S., Biological effects of platelet lysate added to cultural medium of human cells, Geny Kletki, 2014, vol. 9, no. 1, pp. 77–85. Nemets, E.A. and Sevastianov, V.I., The interactions of heparinized biomaterials with human serum albumin, fibrinogen, antithrombin-III, and platelets, Artif. Organs, 1991, vol. 15, pp. 381–385. GOST (State Standard) ISO 10993-4-2020: Medical Devices. Biological Evaluation of Medical Devices. Part 4. Selection of Tests for Interactions with Blood, 2021. GOST (State Standard) ISO 10993-12-2011: Medical Devices. Biological Evaluation of Medical Devices. Part 12. Sample Preparation and Control Materials, 2013. GOST (State Standard) ISO 10993-5-2011: Medical Devices. Biological Evaluation of Medical Devices. Part 5. Tests for in vitro Cytotoxicity, 2013. Lebedev, L.V., Plotnik, L.L., and Smirnov, A.D., Protezy krovenosnykh sosudov (Blood Vessel Prostheses), Leningrad: Meditsina, 1981.