Composite xốp trương nở từ hypromellose được gia cố với chiết xuất phenolic giàu Eucalyptus camaldulensis có tính kỵ nước và ưa nước để giảm thiểu nhiễm trùng vết thương da

Journal of Polymers and the Environment - Tập 31 - Trang 3841-3856 - 2023
Vijay R. Chidrawar1, Sudarshan Singh2, Titilope John Jayeoye3, Rajesh Dodiya4, Weerasak Samee5, Chuda Chittasupho2
1Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Chiyyedu, India
2Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
3Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
4School of Pharmacy, Faculty of Pharmacy, Parul University, Waghodia, India
5Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok, Thailand

Tóm tắt

Nhiễm trùng vết thương lây lan đã trở thành một trong những thách thức phổ biến nhất liên quan đến các vết thương, gây ra phản ứng viêm nghiêm trọng và cuối cùng làm chậm quá trình tái sinh mô da. Bài báo này mô tả một chiết xuất từ lá Eucalyptus camaldulensis (EC) giàu phenolic, chứa thành phần kỵ nước (ECG) và ưa nước (ECY), được gia cố trong một ma trận polymer hypromellose, với các đặc trưng cụ thể. Hệ composite được nhắm đến như một loại băng vết thương hiệu quả với các tính chất chống oxy hóa, kháng khuẩn, chống viêm và cầm máu. Phân tích phổ hồng ngoại và phân tích nhiệt của hệ composite gia cố ECG và ECY chỉ ra liên kết chéo dựa trên liên kết hydro đáng kể, trong khi hình ảnh kính hiển vi điện tử quét cho thấy cấu trúc xốp. Hồ sơ sắc ký cho thấy 0.022 ± 0.02 và 0.027 ± 0.01 µg/mg quercetin cho hệ composite gia cố ECG và ECY, tương ứng. Hoạt tính kháng khuẩn và chất chống oxy hóa của composite được bổ sung chiết xuất cao hơn đáng kể (p < 0.001) so với thuốc đối chứng. Kết quả sinh học tương thích cho thấy các hệ mẫu tương thích với > 80% tỷ lệ sống của tế bào HaCaT và RAW 264.7. Kết quả về đông máu và động học đông máu cho thấy tính năng cầm máu đạt được phụ thuộc vào thời gian và liều lượng. Composite được gia cố bằng chiết xuất từ lá Eucalyptus camaldulensis ưa nước đã giảm đáng kể (p < 0.001) sự sản xuất nitrite trong các tế bào đại thực bào bị kích thích bằng lipopolysaccharides. Hơn nữa, tế bào HaCaT cho thấy tỷ lệ di chuyển đạt 43.59 ± 1.26 (%) và 48.12 ± 1.85 (%) khi điều trị bằng composite chứa ECG và ECY sau 24 giờ, tương ứng. Nhìn chung, các hệ composite được bổ sung chiết xuất ưa nước cho thấy nhiều tính chất sinh học đa dạng, cho thấy tiềm năng của chúng như một loại băng vết thương toàn diện.

Từ khóa

#nhiễm trùng vết thương #Eucalyptus camaldulensis #chiết xuất phenolic #hypromellose #cầm máu #kháng khuẩn #chống viêm #mô sinh học

Tài liệu tham khảo

Machado GHA, Marques TR, de Carvalho TCL, Duarte AC, de Oliveira FC, Gonçalves MC, Piccoli RH, Corrêa AD (2018) Antibacterial activity and in vivo wound healing potential of phenolic extracts from jaboticaba skin. Chem Biol Drug Des 92(1):1333–1343. https://doi.org/10.1111/cbdd.13198 Nwabor OF, Singh S, Paosen S, Vongkamjan K, Voravuthikunchai SP (2020) Enhancement of food shelf life with polyvinyl alcohol-chitosan nanocomposite films from bioactive Eucalyptus leaf extracts. Food Biosci 36:100609. https://doi.org/10.1016/j.fbio.2020.100609 Yang D, Gong L, Li Q, Fan B, Ma C, He Y-C (2023) Preparation of a biobased polyelectrolyte complex from chitosan and sodium carboxymethyl cellulose and its antibacterial characteristics. Int J Biolog Macromol 227:524–534. https://doi.org/10.1016/j.ijbiomac.2022.12.089 Herliana H, Yusuf HY, Laviana A, Wandawa G, Cahyanto A (2023) Characterization and analysis of chitosan-gelatin composite-based biomaterial effectivity as local hemostatic agent: a systematic review. Polymers 15(3):575 Singh S, Chunglok W, Nwabor OF, Ushir YV, Singh S, Panpipat W (2022) Hydrophilic biopolymer matrix antibacterial peel-off facial mask functionalized with biogenic nanostructured material for cosmeceutical applications. J Polym Environ 30(3):938–953. https://doi.org/10.1007/s10924-021-02249-5 Jayeoye TJ, Eze FN, Singh S, Olatunde OO, Benjakul S, Rujiralai T (2021) Synthesis of gold nanoparticles/polyaniline boronic acid/sodium alginate aqueous nanocomposite based on chemical oxidative polymerization for biological applications. Int J Biol Macromol 179:196–205. https://doi.org/10.1016/j.ijbiomac.2021.02.199 Singh S, Nwabor OF, Syukri DM, Voravuthikunchai SP (2021) Chitosan-poly(vinyl alcohol) intelligent films fortified with anthocyanins isolated from Clitoria ternatea and Carissa carandas for monitoring beverage freshness. Int J Biol Macromol 182:1015–1025. https://doi.org/10.1016/j.ijbiomac.2021.04.027 Eze FN, Jayeoye TJ, Singh S (2022) Fabrication of intelligent pH-sensing films with antioxidant potential for monitoring shrimp freshness via the fortification of chitosan matrix with broken Riceberry phenolic extract. Food Chem 366:130574. https://doi.org/10.1016/j.foodchem.2021.130574 Marciano JS, Ferreira RR, de Souza AG, Barbosa RFS, de Moura Junior AJ, Rosa DS (2021) Biodegradable gelatin composite hydrogels filled with cellulose for chromium (VI) adsorption from contaminated water. Int J Biol Macromol 181:112–124. https://doi.org/10.1016/j.ijbiomac.2021.03.117 Singh S, Nwabor OF, Ontong JC, Kaewnopparat N, Voravuthikunchai SP (2020) Characterization of a novel, co-processed bio-based polymer, and its effect on mucoadhesive strength. Int J Biol Macromol 145:865–875. https://doi.org/10.1016/j.ijbiomac.2019.11.198 Singh S, Nwabor OF, Sukri DM, Wunnoo S, Dumjun K, Lethongkam S, Kusolphat P, Hemtanon N, Klinprathum K, Sunghan J, Dejyong K, Lertwittayanon K, Pisuchpen S, Voravuthikunchai SP (2022) Poly (vinyl alcohol) copolymerized with xanthan gum/hypromellose/sodium carboxymethyl cellulose dermal dressings functionalized with biogenic nanostructured materials for antibacterial and wound healing application. Int J Biol Macromol 216:235–250. https://doi.org/10.1016/j.ijbiomac.2022.06.172 Van Vuuren S, Holl D (2017) Antimicrobial natural product research: a review from a South African perspective for the years 2009–2016. J Ethnopharmacol 208:236–252. https://doi.org/10.1016/j.jep.2017.07.011 Wunnoo S, Paosen S, Lethongkam S, Sukkurd R, Waen-ngoen T, Nuidate T, Phengmak M, Voravuthikunchai SP (2021) Biologically rapid synthesized silver nanoparticles from aqueous Eucalyptus camaldulensis leaf extract: effects on hyphal growth, hydrolytic enzymes, and biofilm formation in Candida albicans. Biotechnol Bioeng 118(4):1578–1592. https://doi.org/10.1002/bit.27675 Daus M, Wunnoo S, Voravuthikunchai SP, Saithong S, Poldorn P, Jungsuttiwong S, Chomlamay N, Yangok K, Watanapokasin R, Chakthong S (2022) Phloroglucinol–meroterpenoids from the leaves of Eucalyptus camaldulensis Dehnh. Phytochemistry 200:113179. https://doi.org/10.1016/j.phytochem.2022.113179 Grewal K, Joshi J, Rathee S, Kaur S, Singh HP, Batish DR (2022) Chemical Composition and potential of Eucalyptus camaldulensis Dehnh. essential oil and its major components as anti-inflammatory and anti-leishmanial agent. J Essent Oil Bearing Plants 25(3):419–429 Huang Y, An M, Fang A, Olatunji OJ, Eze FN (2022) Antiproliferative activities of the lipophilic fraction of eucalyptus camaldulensis against mcf-7 breast cancer cells, uplc-esi-qtof-ms metabolite profile, and antioxidative functions. ACS Omega 7(31):27369–27381 Noumi VD, Deli M, Nguimbou RM, Baudelaire E, Rup-Jacques S, Amadou D, Sokeng S, Njintang NY (2022) Particle size effects on antioxydant and hepatoprotective potential of essential oil from eucalyptus camaldulensis leaves against carbon tetrachloride-induced hepatotoxicity in rats. Pharmacol Pharm 13(8):253–272 Mondal M, Quispe C, Sarkar C, Bepari TC, Alam MJ, Saha S, Ray P, Rahim MA, Islam MT, Setzer WN (2021) Analgesic and anti-inflammatory potential of essential oil of eucalyptus camaldulensis leaf: in vivo and in silico studies. Nat Prod Commun 16(4):1934578X211007634 Lawal TO (2014) Ulcer-healing promoting activities of methanol extracts of Eucalyptus camaldulensis Dehnh. and Eucalyptus torelliana F. Muell in rat. Arch Basic Appl Med 2(3):1–11 Nwabor OF, Singh S, Wunnoo S, Lerwittayanon K, Voravuthikunchai SP (2021) Facile deposition of biogenic silver nanoparticles on porous alumina discs, an efficient antimicrobial, antibiofilm, and antifouling strategy for functional contact surfaces. Biofouling 37(5):538–554. https://doi.org/10.1080/08927014.2021.1934457 Nwabor OF, Singh S, Syukri DM, Voravuthikunchai SP (2021) Bioactive fractions of Eucalyptus camaldulensis inhibit important foodborne pathogens, reduce listeriolysin O-induced haemolysis, and ameliorate hydrogen peroxide-induced oxidative stress on human embryonic colon cells. Food Chem 344:128571. https://doi.org/10.1016/j.foodchem.2020.128571 Nwabor OF, Vongkamjam K, Voravuthikunchai SP (2019) Antioxidant properties and antibacterial effects of Eucalyptus camaldulensis ethanolic leaf extract on biofilm formation, motility, hemolysin production, and cell membrane of the foodborne pathogen Listeria monocytogenes. Foodborne Pathogens Dis 16(8):581–589. https://doi.org/10.1089/fpd.2019.2620 Singh S, Chunglok W, Nwabor OF, Chulrik W, Jansakun C, Bhoopong P (2022) Porous biodegradable sodium alginate composite fortified with Hibiscus Sabdariffa L. calyx extract for the multifarious biological applications and extension of climacteric fruit shelf-life. J Polym Environ. https://doi.org/10.1007/s10924-022-02596-x CLSI C (2016) Performance standards for antimicrobial susceptibility testing. Clinical Lab Stand Inst 35(3):16–38 Nwabor OF, Singh S, Marlina D, Voravuthikunchai SP (2020) Chemical characterization, release, and bioactivity of Eucalyptus camaldulensis polyphenols from freeze-dried sodium alginate and sodium carboxymethyl cellulose matrix. Food Qual Saf 4:203–212 Ontong JC, Singh S, Nwabor OF, Chusri S, Kaewnam W, Kanokwiroon K, Septama AW, Panichayupakaranant P, Voravuthikunchai SP (2023) Microwave-assisted extract of rhodomyrtone from Rhodomyrtus tomentosa leaf: anti-inflammatory, antibacterial, antioxidant, and safety assessment of topical rhodomyrtone formulation. Sep Sci Tech 58(5):929–943. https://doi.org/10.1080/01496395.2023.2169162 Singh S, Chidrawar VR, Hermawan D, Dodiya R, Samee W, Ontong JC, Ushir YV, Prajapati BG, Chittasupho C (2023) Hypromellose highly swellable composite fortified with Psidium guajava Leaf phenolic-rich extract for antioxidative, antibacterial, anti-inflammatory, anti-melanogenesis, and hemostasis applications. J Polym Environ. https://doi.org/10.1007/s10924-023-02819-9 Fitzmaurice SD, Sivamani RK, Isseroff RR (2011) Antioxidant therapies for wound healing: a clinical guide to currently commercially available products. Skin Pharmacol Physiol 24(3):113–126. https://doi.org/10.1159/000322643 Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19(10):16240–16265 Brahmkshatriya PP, Brahmkshatriya PS (2013) Terpenes: chemistry, biological role, and therapeutic applications. In: Ramawat K, Mérillon JM (eds) Natural products. Springer, Berlin, Heidelberg, pp 2665–2691. https://doi.org/10.1007/978-3-642-22144-6_120 Amarowicz R (2007) Tannins: the new natural antioxidants?, vol 109. Wiley Online Library, Hobiken Hashemi Gahruie H, Mirzapour A, Ghiasi F, Eskandari MH, Moosavi-Nasab M, Hosseini SMH (2022) Development and characterization of gelatin and Persian gum composite edible films through complex coacervation. LWT 153:112422. https://doi.org/10.1016/j.lwt.2021.112422 Winter GD (1962) Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature 193(4812):293–294 Ashraf A, Sarfraz RA, Mahmood A, Din Mu (2015) Chemical composition and in vitro antioxidant and antitumor activities of Eucalyptus camaldulensis Dehn. leaves. Ind Crops Prod 74:241–248. https://doi.org/10.1016/j.indcrop.2015.04.059 Abotaleb M, Liskova A, Kubatka P, Büsselberg D (2020) Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules 10(2):221 Yang DJ, Moh SH, Son DH, You S, Kinyua AW, Ko CM, Song M, Yeo J, Choi Y-H, Kim KW (2016) Gallic acid promotes wound healing in normal and hyperglucidic conditions. Molecules 21(7):899 Chittasupho C, Manthaisong A, Okonogi S, Tadtong S, Samee W (2022) Effects of quercetin and curcumin combination on antibacterial, antioxidant, in vitro wound healing and migration of human dermal fibroblast cells. Int J Molec Sci 23(1):142 Li L, He Y, Zhao M, Jiang J (2013) Collective cell migration: implications for wound healing and cancer invasion. Burns Trauma 1(1):2321–3868 Jonkman JE, Cathcart JA, Xu F, Bartolini ME, Amon JE, Stevens KM, Colarusso P (2014) An introduction to the wound healing assay using live-cell microscopy. Cell Adhes Migr 8(5):440–451 Yarrow JC, Perlman ZE, Westwood NJ, Mitchison TJ (2004) A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods. BMC Biotechnol 4:1–9 Mumtaz R, Zubair M, Khan MA, Muzammil S, Siddique MH (2022) Extracts of Eucalyptus alba Promote diabetic wound healing by inhibiting α-glucosidase and stimulating cell proliferation. Evid Based Complement Altern Med 2022:1–12 Hukkeri VI, Karadi R, Akki K, Savadi R, Jaiprakash B, Kuppast I, Patil M (2002) Wound healing property of Eucalyptus globulus L. leaf extract’. Indian Drugs 39(9):481–483 Knezevic P, Aleksic V, Simin N, Svircev E, Petrovic A, Mimica-Dukic N (2016) Antimicrobial activity of Eucalyptus camaldulensis essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant Acinetobacter baumannii. J Ethnopharmacol 178:125–136. https://doi.org/10.1016/j.jep.2015.12.008 Nosenko MA, Ambaryan SG, Drutskaya MS (2019) Proinflammatory cytokines and skin wound healing in mice. Mol Biol 53(5):653–664. https://doi.org/10.1134/S0026893319050121 Chittasupho C, Chaobankrang K, Sarawungkad A, Samee W, Singh S, Hemsuwimon K, Okonogi S, Kheawfu K, Kiattisin K, Chaiyana W (2023) Antioxidant, anti-inflammatory and attenuating intracellular reactive oxygen species activities of nicotiana tabacum var. Virginia leaf extract phytosomes and shape memory gel formulation. Gels 9(2):78 Ninan N, Forget A, Shastri VP, Voelcker NH, Blencowe A (2016) Antibacterial and anti-inflammatory ph-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing. ACS Appl Mater Interfaces 8(42):28511–28521. https://doi.org/10.1021/acsami.6b10491