Porous SiO2–TiO2–ZrO2 Obtained from Polymeric Systems Prepared by the Sol–Gel Process

Springer Science and Business Media LLC - Tập 8 - Trang 303-309 - 2001
L. Valdez-Castro1, J. Méndez-Vivar1, R. Mendoza-Serna1,2
1Depto. de Química, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F.
2Facultad de Estudios Superiores Zaragoza, Carrera de Ing. Química, U.N.A.M., México, D.F., México

Tóm tắt

An experimental strategy was developed to obtain Si–Ti–Zr transparent sols via the sol-gel process. The chelating agents isoeugenol (2-methoxy-4-propenylphenol, isoH), salicylaldehyde (2-hydroxybenzaldehyde, salH), and itaconic anhydride (2-methylenesuccinic anhydride, anhH) were employed separately to stabilize monomeric Ti and Zr precursors, in order to control their chemical reactivity, avoiding precipitation. In all cases a prehydrolyzed tetraethyl orthosilicate (TEOS) sol was the Si source. The sols were polymerized at room temperature (293 K) to obtain gels and these were dried and calcined at 873 K in air. The radial distribution functions (RDF) of the gels were obtained at room temperature. The solids were studied by scanning electron microscopy (SEM). The porosity and surface area of solids were determined by N2 adsorption. The surface area results obtained range between 83–198 m2/g. The average pore diameters are 1.44–1.61 nm.

Tài liệu tham khảo

W. Beier, A.A. G¨oktas, and G.H. Frischat, J. Am. Ceram. Soc. Comm. 69(7), C148 (1986). Z. Gonsgshen, H. Lisong, G. Fuxi, and J. Zhonghong, J. Non-Cryst. Solids 63, 105 (1984). W. Beier, A.A. G¨oktas, and G.H. Frischat, J. Non-Cryst. Solids 121, 163 (1990). W. Beier and G.H. Frischat, in Better Ceramics Through Chemistry III, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich (Mater. Res. Soc. Symp. Proc. 121, 1988), p. 817. Ch.Wies, K. Meise-Gresch, W.M¨uller-Warmuth, W. Beier, A.A. G¨oktas, G.H. Frischat, and Ber. Bunsenges. Phys. Chem. 92, 689 (1988). W. Beier, A.A. G¨oktas, and G.H. Frischat, J. Non-Cryst. Solids 100, 531 (1988). L.C. Klein (ed.), Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics and Specialty Shapes (Noyes, Park Ridge, NJ, 1988), p. 382. A.J. Burggraaf and K. Keiser, in Inorganic Membranes, Synthesis, Characteristics and Applications, edited by R.R. Bhave (Van Nostrand, Reinhold, New York, 1991) p. 39. R.S.A. de Lange, Microporous Sol-Gel Derived Ceramic Membranes for Gas Separation, Synthesis, Gas Transport and Separation Properties, Ph.D. Thesis, Universiteit Twente, The Netherlands, 1993, p. 3. C.J. Brinker, T.L. Ward, R. Sehgal, N.K. Raman, S.L. Hietala, D.M. Smith, D.-W. Hua, and T.J. Headley, J. Membrane Sci. 77, 165 (1993). J. Méndez-Vivar, R. Mendoza-Serna, P. Bosch, V.H. Lara, and C.J. Brinker, in Proc.4th Int.Conf.on Inorganic Membranes, Gatlinburg, TN, edited by D.E. Fain, 1996, p. 30. J. Méndez-Vivar and C.J. Brinker, J. Sol-Gel Sci. Tech. 2, 393 (1994). J. Méndez-Vivar and R. Mendoza-Serna, Scanning, 20, 347 (1998). R. Mendoza-Serna, P. Bosch, J. Padilla, V.H. Lara, and J. Méndez-Vivar, J. Non-Cryst. Solids 217, 30 (1997). M. Magini and A. Cabrini, J. Appl. Crystallogr. 5, 14 (1972). H.P. Klug and L.E. Alexander, in X-Ray Diffraction Procedures, 2nd edn. (Wiley, New York, 1974), p. 838. J. Méndez-Vivar, R. Mendoza-Serna, P. Bosch, and V.H. Lara, J. Non-Cryst. Solids 248, 147 (1999). S.J. Gregg and K.S.W. Sing, Adsorption, Surface Area and Porosity, 2nd ed. (Academic Press, London, 1982), p. 195. K.A. Sosin and D.F. Quinn, J. Porous Materials 1, 111 (1995). G. Horv´ath and K. Kawazoe, J. Chem. Eng. Japan 16(6), 470 (1983). S. Lowell and J.E. Shields, Powder Surface Area and Porosity, 3rd ed. (Chapman and Hall, London, 1991), p. 48. R.S.A. De Lange, K-N.P. Kumar, J.H.A. Hekkink, G.M.H. Van de Velde, K. Keizer, A.J. Burggraaf, W.H. Dokter, H.F. Van Garderen, and T.P.M. Beelen, J. Sol-Gel Sci. Tech. 2, 489 (1994).