Porous BiVO4 coupled with CuFeO2 and NiFe layered double hydroxide as highly-efficient photoanode toward boosted photoelectrochemical water oxidation

Ge Yin1, Changhai Liu1,2, Tiantian Shi1, Dingwei Ji1, Yanhua Yao1, Zhidong Chen1,3
1School of Materials Science and Engineering, Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164, PR China
2Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, PR China
3School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, PR China

Tài liệu tham khảo

Chen, Z.; Dinh, H. N.; Miller, E. Photoelectrochemical water splitting, Springer Briefs in Energy 2013, 978-1-4614-8298-7. Hisatomi, 2014, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev., 43, 7520, 10.1039/C3CS60378D Yang, 2019, Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting, Chem. Soc. Rev., 48, 4979, 10.1039/C8CS00997J Fountaine, 2016, Efficiency limits for photoelectrochemical water-splitting, Nat. Commun., 7, 1, 10.1038/ncomms13706 Miller, 2015, Photoelectrochemical water splitting, Energy Environ. Sci., 8, 2809, 10.1039/C5EE90047F Tayebi, 2019, Recent advances in BiVO4 semiconductor materials for hydrogen production using photoelectrochemical water splitting, Renewable Sustainable Energy Rev., 111, 332, 10.1016/j.rser.2019.05.030 Wang, 2017, An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting, Angew. Chem., Int. Ed., 56, 8500, 10.1002/anie.201703491 Zhong, 2016, Bulky crystalline BiVO4 thin films for efficient solar water splitting, J. Mater. Chem. A, 4, 9858, 10.1039/C6TA03072F Lee, 2018, Enabling solar water oxidation by BiVO4 photoanodes in basic media, Chem. Mater., 30, 4704, 10.1021/acs.chemmater.8b01405 Fan, 2020, Cobalt polyoxometalate on N-doped carbon layer to boost photoelectrochemical water oxidation of BiVO4, Chem. Eng. J., 392, 10.1016/j.cej.2019.123744 Rohloff, 2019, Enhanced photoelectrochemical water oxidation performance by fluorine incorporation in BiVO4 and Mo: BiVO4 thin film photoanodes, ACS Appl. Mater. Interfaces, 11, 16430, 10.1021/acsami.8b16617 Pihosh, 2015, Sci. Rep., 5, 11141, 10.1038/srep11141 Ng, 2010, Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting, J. Phys. Chem. Lett., 1, 2607, 10.1021/jz100978u Su, 2010, Aqueous growth of pyramidal-shaped BiVO4 nanowire arrays and structural characterization: application to photoelectrochemical water splitting, Cryst. Growth Des., 10, 856, 10.1021/cg9012125 Nasir, 2017, New insights into Se/BiVO4 heterostructure for photoelectrochemical water splitting: a combined experimental and DFT study, J. Phys. Chem. C, 121, 6218, 10.1021/acs.jpcc.7b01149 Pihosh, 2014, Nanostructured WO3/BiVO4 photoanodes for efficient photoelectrochemical water splitting, Small, 10, 3692, 10.1002/smll.201400276 Gao, 2018, Selective Deposition of Ag3PO4 on Specific Facet of BiVO4 Nanoplate for Enhanced Photoelectrochemical Performance, Sol. RRL, 2, 1800102, 10.1002/solr.201800102 McDonald, 2012, A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation, Energy Environ. Sci., 5, 8553, 10.1039/c2ee22608a Akbarzadeh, 2018, One-pot hydrothermal synthesis of g-C3N4/Ag/AgCl/BiVO4 micro-flower composite for the visible light degradation of ibuprofen, Chem. Eng. J., 341, 248, 10.1016/j.cej.2018.02.042 Zhang, 2020, Unveiling the activity and stability origin of BiVO4 photoanodes with FeNi oxyhydroxides for oxygen evolution, Angew. Chem., Int. Ed., 59, 18990, 10.1002/anie.202008198 Zhang, 2021, A novel Cl- modification approach to develop highly efficient photocatalytic oxygen evolution over BiVO4 with AQE of 34.6%, Nano Energy, 81, 10.1016/j.nanoen.2020.105651 Arunachalam, 2019, Oxygen evolution NiOOH catalyst assisted V2O5@ BiVO4 inverse opal hetero-structure for solar water oxidation, Int. J. Hydrogen Energy, 44, 4656, 10.1016/j.ijhydene.2019.01.024 Wang, 2018, New Iron-Cobalt Oxide Catalysts Promoting BiVO4 Films for Photoelectrochemical Water Splitting, Adv. Funct. Mater., 28, 1802685, 10.1002/adfm.201802685 Zhang, 2018, Ultrathin FeOOH Nanolayers with Abundant Oxygen Vacancies on BiVO4 Photoanodes for Efficient Water Oxidation, Angew. Chem. Int. Ed., 57, 2248, 10.1002/anie.201712499 Li, 2015, Simple and Efficient System for Combined Solar Energy Harvesting and Reversible Hydrogen Storage, J. Am. Chem. Soc., 137, 7576, 10.1021/jacs.5b03505 Liu, 2021, A Three-Dimensional Branched TiO2 Photoanode with an Ultrathin Al2O3 Passivation Layer and a NiOOH Cocatalyst toward Photoelectrochemical Water Oxidation, ACS Appl. Mater. Interfaces, 13, 13301, 10.1021/acsami.1c00948 Liu, 2018, Efficient photoelectrochemical water splitting by g-C3N4/TiO2 nanotube array heterostructures, Nano-Micro Lett., 10, 37, 10.1007/s40820-018-0192-6 Wetchakun, 2012, BiVO4/CeO2 Nanocomposites with High Visible-Light-Induced Photocatalytic Activity, ACS Appl. Mater. Interfaces, 4, 3718, 10.1021/am300812n Hong, 2015, Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (040) with enhancing photoelectrochemical andphotocatalytic performance, Appl. Catal., B, 170–171, 206 Ho-Kimura, 2014, Enhanced photoelectrochemical water splitting by nanostructured BiVO4-TiO2 composite electrodes, J. Mater. Chem. A, 2, 3948, 10.1039/c3ta15268e Ye, 2020, Constructing efficient WO3-FPC system for photoelectrochemical H2O2 production and organic pollutants degradation, Chem. Eng. J., 389, 10.1016/j.cej.2019.123427 Dotan, 2011, Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger, Energy Environ. Sci., 4, 958, 10.1039/C0EE00570C Xue, 2021, Electrochemical and photoelectrochemical water oxidation for hydrogen peroxide production, Angew. Chem., Int. Ed., 60, 10469, 10.1002/anie.202011215 Wang, 2018, FeF2/BiVO4 heterojuction photoelectrodes and evaluation of its photoelectrochemical performance for water splitting, Chem. Eng. J., 337, 506, 10.1016/j.cej.2017.12.126 Hajra, 2019, Facile photoelectrochemical water oxidation on Co2+-adsorbed BiVO4 thin films synthesized from aqueous solutions, Chem. Eng. J., 374, 1221, 10.1016/j.cej.2019.06.014 Majumder, 2021, Y Effect of SILAR-anchored ZnFe2O4 on the BiVO4 nanostructure: An attempt towards enhancing photoelectrochemical water splitting, Appl. Surf. Sci., 546, 10.1016/j.apsusc.2021.149033 Pan, 2018, Boosting charge separation and transfer by plasmon-enhanced MoS2/BiVO4 p–n heterojunction composite for efficient photoelectrochemical water splitting, ACS Sustainable Chem. Eng., 6, 6378, 10.1021/acssuschemeng.8b00170 Ye, 2019, Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering, Nat. Commun., 10, 3687, 10.1038/s41467-019-11586-y