Porous BiVO4 coupled with CuFeO2 and NiFe layered double hydroxide as highly-efficient photoanode toward boosted photoelectrochemical water oxidation
Tài liệu tham khảo
Chen, Z.; Dinh, H. N.; Miller, E. Photoelectrochemical water splitting, Springer Briefs in Energy 2013, 978-1-4614-8298-7.
Hisatomi, 2014, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev., 43, 7520, 10.1039/C3CS60378D
Yang, 2019, Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting, Chem. Soc. Rev., 48, 4979, 10.1039/C8CS00997J
Fountaine, 2016, Efficiency limits for photoelectrochemical water-splitting, Nat. Commun., 7, 1, 10.1038/ncomms13706
Miller, 2015, Photoelectrochemical water splitting, Energy Environ. Sci., 8, 2809, 10.1039/C5EE90047F
Tayebi, 2019, Recent advances in BiVO4 semiconductor materials for hydrogen production using photoelectrochemical water splitting, Renewable Sustainable Energy Rev., 111, 332, 10.1016/j.rser.2019.05.030
Wang, 2017, An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting, Angew. Chem., Int. Ed., 56, 8500, 10.1002/anie.201703491
Zhong, 2016, Bulky crystalline BiVO4 thin films for efficient solar water splitting, J. Mater. Chem. A, 4, 9858, 10.1039/C6TA03072F
Lee, 2018, Enabling solar water oxidation by BiVO4 photoanodes in basic media, Chem. Mater., 30, 4704, 10.1021/acs.chemmater.8b01405
Fan, 2020, Cobalt polyoxometalate on N-doped carbon layer to boost photoelectrochemical water oxidation of BiVO4, Chem. Eng. J., 392, 10.1016/j.cej.2019.123744
Rohloff, 2019, Enhanced photoelectrochemical water oxidation performance by fluorine incorporation in BiVO4 and Mo: BiVO4 thin film photoanodes, ACS Appl. Mater. Interfaces, 11, 16430, 10.1021/acsami.8b16617
Pihosh, 2015, Sci. Rep., 5, 11141, 10.1038/srep11141
Ng, 2010, Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting, J. Phys. Chem. Lett., 1, 2607, 10.1021/jz100978u
Su, 2010, Aqueous growth of pyramidal-shaped BiVO4 nanowire arrays and structural characterization: application to photoelectrochemical water splitting, Cryst. Growth Des., 10, 856, 10.1021/cg9012125
Nasir, 2017, New insights into Se/BiVO4 heterostructure for photoelectrochemical water splitting: a combined experimental and DFT study, J. Phys. Chem. C, 121, 6218, 10.1021/acs.jpcc.7b01149
Pihosh, 2014, Nanostructured WO3/BiVO4 photoanodes for efficient photoelectrochemical water splitting, Small, 10, 3692, 10.1002/smll.201400276
Gao, 2018, Selective Deposition of Ag3PO4 on Specific Facet of BiVO4 Nanoplate for Enhanced Photoelectrochemical Performance, Sol. RRL, 2, 1800102, 10.1002/solr.201800102
McDonald, 2012, A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation, Energy Environ. Sci., 5, 8553, 10.1039/c2ee22608a
Akbarzadeh, 2018, One-pot hydrothermal synthesis of g-C3N4/Ag/AgCl/BiVO4 micro-flower composite for the visible light degradation of ibuprofen, Chem. Eng. J., 341, 248, 10.1016/j.cej.2018.02.042
Zhang, 2020, Unveiling the activity and stability origin of BiVO4 photoanodes with FeNi oxyhydroxides for oxygen evolution, Angew. Chem., Int. Ed., 59, 18990, 10.1002/anie.202008198
Zhang, 2021, A novel Cl- modification approach to develop highly efficient photocatalytic oxygen evolution over BiVO4 with AQE of 34.6%, Nano Energy, 81, 10.1016/j.nanoen.2020.105651
Arunachalam, 2019, Oxygen evolution NiOOH catalyst assisted V2O5@ BiVO4 inverse opal hetero-structure for solar water oxidation, Int. J. Hydrogen Energy, 44, 4656, 10.1016/j.ijhydene.2019.01.024
Wang, 2018, New Iron-Cobalt Oxide Catalysts Promoting BiVO4 Films for Photoelectrochemical Water Splitting, Adv. Funct. Mater., 28, 1802685, 10.1002/adfm.201802685
Zhang, 2018, Ultrathin FeOOH Nanolayers with Abundant Oxygen Vacancies on BiVO4 Photoanodes for Efficient Water Oxidation, Angew. Chem. Int. Ed., 57, 2248, 10.1002/anie.201712499
Li, 2015, Simple and Efficient System for Combined Solar Energy Harvesting and Reversible Hydrogen Storage, J. Am. Chem. Soc., 137, 7576, 10.1021/jacs.5b03505
Liu, 2021, A Three-Dimensional Branched TiO2 Photoanode with an Ultrathin Al2O3 Passivation Layer and a NiOOH Cocatalyst toward Photoelectrochemical Water Oxidation, ACS Appl. Mater. Interfaces, 13, 13301, 10.1021/acsami.1c00948
Liu, 2018, Efficient photoelectrochemical water splitting by g-C3N4/TiO2 nanotube array heterostructures, Nano-Micro Lett., 10, 37, 10.1007/s40820-018-0192-6
Wetchakun, 2012, BiVO4/CeO2 Nanocomposites with High Visible-Light-Induced Photocatalytic Activity, ACS Appl. Mater. Interfaces, 4, 3718, 10.1021/am300812n
Hong, 2015, Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (040) with enhancing photoelectrochemical andphotocatalytic performance, Appl. Catal., B, 170–171, 206
Ho-Kimura, 2014, Enhanced photoelectrochemical water splitting by nanostructured BiVO4-TiO2 composite electrodes, J. Mater. Chem. A, 2, 3948, 10.1039/c3ta15268e
Ye, 2020, Constructing efficient WO3-FPC system for photoelectrochemical H2O2 production and organic pollutants degradation, Chem. Eng. J., 389, 10.1016/j.cej.2019.123427
Dotan, 2011, Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger, Energy Environ. Sci., 4, 958, 10.1039/C0EE00570C
Xue, 2021, Electrochemical and photoelectrochemical water oxidation for hydrogen peroxide production, Angew. Chem., Int. Ed., 60, 10469, 10.1002/anie.202011215
Wang, 2018, FeF2/BiVO4 heterojuction photoelectrodes and evaluation of its photoelectrochemical performance for water splitting, Chem. Eng. J., 337, 506, 10.1016/j.cej.2017.12.126
Hajra, 2019, Facile photoelectrochemical water oxidation on Co2+-adsorbed BiVO4 thin films synthesized from aqueous solutions, Chem. Eng. J., 374, 1221, 10.1016/j.cej.2019.06.014
Majumder, 2021, Y Effect of SILAR-anchored ZnFe2O4 on the BiVO4 nanostructure: An attempt towards enhancing photoelectrochemical water splitting, Appl. Surf. Sci., 546, 10.1016/j.apsusc.2021.149033
Pan, 2018, Boosting charge separation and transfer by plasmon-enhanced MoS2/BiVO4 p–n heterojunction composite for efficient photoelectrochemical water splitting, ACS Sustainable Chem. Eng., 6, 6378, 10.1021/acssuschemeng.8b00170
Ye, 2019, Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering, Nat. Commun., 10, 3687, 10.1038/s41467-019-11586-y