Porous Alumina Membrane-Based Electrochemical Biosensor for Protein Biomarker Detection in Chronic Wounds

Gayathri Rajeev1, Elizabeth Melville1, Allison J. Cowin1, Beatriz Prieto‐Simón2,1,3, Nicolas H. Voelcker4,1,5,6,3
1Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
2Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
3Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
4Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, VIC, Australia
5Materials Science and Engineering, Monash University, Clayton, VIC, Australia
6Melbourne Centre for Nanofabrication, Clayton, VIC, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adams, 2009, Attenuation of flightless I, an actin-remodelling protein, improves burn injury repair via modulation of transforming growth factor (TGF)-beta1 and TGF-beta3, Br. J. Dermatol, 161, 326, 10.1111/j.1365-2133.2009.09296.x

Adams, 2008, Gender specific effects on the actin-remodelling protein flightless I and TGF-β1 contribute to impaired wound healing in aged skin, Int. J. Biochem. Cell Biol, 40, 1555, 10.1016/j.biocel.2007.11.024

Alam, 2011, Fabrication of hexagonally ordered nanopores in anodic alumina: an alternative pretreatment, Surf. Sci, 605, 441, 10.1016/j.susc.2010.11.015

Cowin, 2007, Flightless I deficiency enhances wound repair by increasing cell migration and proliferation, J. Pathol, 211, 572, 10.1002/path.2143

Cowin, 2006, Role of the Actin Cytoskeleton in Wound Healing and Scar Formation [online], Primary Intention., 14, 39

Dargaville, 2013, Sensors and imaging for wound healing: a review, Biosens. Bioelectron., 41, 30, 10.1016/j.bios.2012.09.029

de la Escosura-Muñiz, 2013, Nanochannels for diagnostic of thrombin-related diseases in human blood, Biosens. Bioelectron., 40, 24, 10.1016/j.bios.2012.05.021

de la Escosura-Muñiz, 2010, Label-free voltammetric immunosensor using a nanoporous membrane based platform, Electrochem. Commun, 12, 859, 10.1016/j.elecom.2010.04.007

de la Escosura-Muñiz, 2011, A nanochannel/nanoparticle-based filtering and sensing platform for direct detection of a cancer biomarker in blood, Small, 7, 675, 10.1002/smll.201002349

Edwards, 2013, Peptide conjugated cellulose nanocrystals with sensitive human neutrophil elastase sensor activity, Cellulose, 20, 1223, 10.1007/s10570-013-9901-y

Espinoza-Castañeda, 2015, Nanochannel array device operating through Prussian blue nanoparticles for sensitive label-free immunodetection of a cancer biomarker, Biosens. Bioelectron., 67, 107, 10.1016/j.bios.2014.07.039

Jackson, 2012, Flii neutralizing antibodies improve wound healing in porcine preclinical studies, Wound Repair Regen, 20, 523, 10.1111/j.1524-475X.2012.00802.x

Jankowska, 2017, Simultaneous detection of pH value and glucose concentrations for wound monitoring applications, Biosens. Bioelectron, 87, 312, 10.1016/j.bios.2016.08.072

Koh, 2007, Development of a membrane-based electrochemical immunosensor, Electrochim. Acta, 53, 803, 10.1016/j.electacta.2007.07.055

Kopecki, 2008, Flightless I: an actin-remodelling protein and an important negative regulator of wound repair, Int. J. Biochem. Cell Biol., 40, 1415, 10.1016/j.biocel.2007.04.011

Kopecki, 2012, Topically applied flightless I neutralizing antibodies improve healing of blistered skin in a murine model of epidermolysis bullosa acquisita, J. Invest. Dermatol, 133, 1008, 10.1038/jid.2012.457

Krismastuti, , Real time monitoring of layer-by-layer polyelectrolyte deposition and bacterial enzyme detection in nanoporous anodized aluminum oxide, Anal. Chem, 87, 3856, 10.1021/ac504626m

Krismastuti, , Toward multiplexing detection of wound healing biomarkers on porous silicon resonant microcavities, Adv. Sci, 3, 1500383, 10.1002/advs.201500383

Krismastuti, 2017, Disperse-and-collect approach for the type-selective detection of matrix metalloproteinases in porous silicon resonant microcavities, ACS Sens, 2, 203, 10.1021/acssensors.6b00442

Krismastuti, 2014, Porous silicon resonant microcavity biosensor for matrix metalloproteinase detection, Adv. Funct. Mater, 24, 3639, 10.1002/adfm.201304053

Lin, 2011, Decreased expression of flightless I, a gelsolin family member and developmental regulator, in early-gestation fetal wounds improves healing, Mamm. Genome, 22, 341, 10.1007/s00335-011-9320-z

Masuda, 2005, Highly ordered nanohole arrays in anodic porous alumina, Ordered Porous Nanostructures and Applications, 37, 10.1007/0-387-25193-6_3

Masuda, 1995, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science, 268, 1466, 10.1126/science.268.5216.1466

Md Jani, 2013, Nanoporous anodic aluminium oxide: advances in surface engineering and emerging applications, Prog. Mater. Sci, 58, 636, 10.1016/j.pmatsci.2013.01.002

Nguyen, 2009, Membrane-based electrochemical nanobiosensor for the detection of virus, Anal. Chem, 81, 7226, 10.1021/ac900761a

Nguyen, 2012, Electrochemical impedance spectroscopy characterization of nanoporous alumina dengue virus biosensor, Bioelectrochemistry, 88, 15, 10.1016/j.bioelechem.2012.04.006

Ochoa, 2014, Flexible sensors for chronic wound management, IEEE Rev. Biomedi. Eng, 7, 73, 10.1109/RBME.2013.2295817

Rajeev, 2018, Advances in nanoporous anodic alumina-based biosensors to detect biomarkers of clinical significance: a review, Adv. Healthc. Mater, 7, 1700904, 10.1002/adhm.201700904

Reta, 2018, Nanostructured electrochemical biosensors for label-free detection of water- and food-borne pathogens, ACS Appl. Mater. Interfaces, 10, 6055, 10.1021/acsami.7b13943

RoyChoudhury, 2018, Continuous monitoring of wound healing using a wearable enzymatic uric acid biosensor, J. Electrochem. Soc, 165, B3168, 10.1149/2.0231808jes

Ruzehaji, 2012, Cytoskeletal protein flightless (Flii) is elevated in chronic and acute human wounds and wound fluid: neutralizing its activity in chronic but not acute wound fluid improves cellular proliferation, Eur. J. Dermatol, 22, 740, 10.1684/ejd.2012.1878

Ruzehaji, 2014, Attenuation of flightless I improves wound healing and enhances angiogenesis in a murine model of type 1 diabetes, Diabetologia, 57, 402, 10.1007/s00125-013-3107-6

Salvo, 2015, The role of biomedical sensors in wound healing, Wound Med, 8, 15, 10.1016/j.wndm.2015.03.007

Santos, 2013, Nanoporous anodic aluminum oxide for chemical sensing and biosensors, TrAC Trends Anal. Chem, 44, 25, 10.1016/j.trac.2012.11.007

Sharp, 2013, Printed composite electrodes for in-situ wound pH monitoring, Biosens. Bioelectron., 50, 399, 10.1016/j.bios.2013.06.042

Tang, 2016, Bacteria detection based on its blockage effect on silicon nanopore array, Biosens. Bioelectron., 79, 715, 10.1016/j.bios.2015.12.109

Vlassiouk, 2005, Sensing DNA hybridization via ionic conductance through a nanoporous electrode, Langmuir, 21, 4776, 10.1021/la0471644