Porosity and water saturation predicting beyond boreholes from electromagnetic sounding and core sample data: Soultz-sous-Forêts (France) case study
Tài liệu tham khảo
Adekanle, 2013, Porosity prediction from seismic inversion properties over ‘XLD’ field, Niger Delta, Amer. J. Scient. Indust. Res., 4, 31, 10.5251/ajsir.2013.4.1.31.35
Agbasi, 2013, Estimation of water saturation using a modeled equation and Archie’s equation from wire-line logs, Niger Delta Nigeria, J. Appl. Phys., 3, 66
Ahmadi, 2019, Comparison of machine learning methods for estimating permeability and porosity of oil reservoirs via petrophysical logs, Petroleum, 5, 271, 10.1016/j.petlm.2018.06.002
Ali, 2019, Comparative estimation of water saturation in carbonate reservoir: a case study of northern Iraq, Period. Eng. Nat. Sci., 7, 1743
Alimoradi, 2011, Methods of water saturation estimation: historical perspective, J. Petroleum Gas Eng., 2, 45
Angeleri, 1982, Porosity prediction from seismic data, Geophys. Prospect., 30, 580, 10.1111/j.1365-2478.1982.tb01328.x
Anovitz, 2015, Characterization and analysis of porosity and pore structures, Rev. Mineral. Geochem., 80, 61, 10.2138/rmg.2015.80.04
Archie, 1942, The electrical resistivity log as an aid in determining some reservoir characteristics, Amer. Inst. Mining Metall. Eng. Trans., 146, 54
Baouche, 2017, Prediction of permeability and porosity from well log data using the nonparametric regression with multivariate analysis and neural network, Hassi R’Mel Field, Algeria, Egypt. J. Pet., 26, 763, 10.1016/j.ejpe.2016.10.013
Berryman, 1999, Estimating rock porosity and fluid saturation using only seismic velocities, 143
Bhatt, 2002, Committee neural networks for porosity and permeability prediction from well logs, Geophys. Prospect., 50, 645, 10.1046/j.1365-2478.2002.00346.x
Busch, 2017, Determining the porosity of mudrocks using methodological pluralism
Calderon, 2007, Porosity and lithologic estimation using rock physics and multi-attribute transforms in Balcon Field, Colombia, Lead. Edge, 26, 142, 10.1190/1.2542439
Chambers, 2002, Quantitative use of seismic attributes for reservoir characterization, The Recorder, 27, 20
Chatterjee, 2016, Porosity estimation from pre-stack seismic data in gas-hydrate bearing sediments, Krishna-Godavari basin, India, J. Nat. Gas Sci. Eng., 33, 562, 10.1016/j.jngse.2016.05.066
Clarkson, 2013, Pore structure characterization of north American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion, Fuel, 103, 606, 10.1016/j.fuel.2012.06.119
Cosentini, 2014, Evaluation of porosity and degree of saturation from seismic and electrical data, Geotechnique, 64, 278, 10.1680/geot.13.P.075
De Boor, 1978
De With, 1997, Reliability and reproducibility of mercury intrusion porosimetry, J. Europ. Cer. Soc., 17, 353, 10.1016/S0955-2219(96)00181-1
Dezayes, 2005, Deep-seated geology and fracture system of the EGS Soultz reservoir (France) based on recent 5km depth boreholes
Dezayes, 2010, Structure of the low permeable naturally fractured geothermal reservoir at Soultz, Comptes Rendus Géosci., 343, 517, 10.1016/j.crte.2009.10.002
Di, 2020, Semi-supervised seismic and well log integration for reservoir property estimation
Dolberg, 2000, Porosity prediction from seismic inversion, Lavrans Field, Halten Terrace, Norway, Lead. Edge, 4, 392, 10.1190/1.1438618
Ezekwe, 2011
Flóvenz, 1985, Resistivity structure of the upper crust in Iceland, J. Geophys. Res., 90, 10136, 10.1029/JB090iB12p10136
Geiermann, 2009, 2-D magnetotelluric sounding and modeling at the geothermal site Soultz-sous-Forêts
Geiermann, 2010, 2-D Magnetotellurics at the geothermal site at Soultz-sous-Forêts: Resistivity distribution to about 3000 m depth, Compt. Rendus Geosci., 342, 493, 10.1016/j.crte.2010.04.001
Genter, 1997, Comparative analysis of direct (core) and indirect (borehole imaging tools) collection of fracture data in the Hot Dry Rock Soultz reservoir (France), J. Geophys. Res., 102, 15419, 10.1029/97JB00626
Gogoi, 2019, Estimation of Petrophysical Parameters using Seismic Inversion and Neural Network Modeling in Upper Assam Basin, India, Geosci. Front., 10, 1113, 10.1016/j.gsf.2018.07.002
Guo, 2019, Electrical Conductivity of NaCl-Bearing Aqueous Fluids to 900 °C and 5 GPa, J. Geophys. Res. Solid Earth, 124, 1397, 10.1029/2018JB016658
Hashin, 1962, A variational approach to the theory of effective magnetic permeability of multiphase materials, J. Appl. Phys., 33, 3125, 10.1063/1.1728579
Haykin, 1999
Hayley, 2007, Low temperature dependence of electrical resistivity: Implications for near surface geophysical monitoring, Geophys. Res. Lett., 34, L18402, 10.1029/2007GL031124
Jorgensen, 1988, Using geophysical logs to estimate porosity, water resistivity, and intrinsic permeability, 1
Kalkomey, 1997, Potential risks when using seismic attributes as predictors of reservoir properties, Lead. Edge, 3, 247, 10.1190/1.1437610
Kumar, 2016, A methodology of porosity estimation from inversion of post-stack seismic data, J. Nat. Gas Sci. Eng., 28, 356, 10.1016/j.jngse.2015.12.028
Kummerow, 2015, Temperature dependence of electrical resistivity - part I: Experimental investigations of hydrothermal fluids, Energy Procedia, 76, 240, 10.1016/j.egypro.2015.07.854
Ledesert, 1993, Fracturation et paleocirculations hydrothermales
Leiphart, 2001, Comparison of linear regression and a probabilistic neural network to predict porosity from 3-D seismic attributes in lower Brushy Canyon channeled sandstones, Southeast New Mexico, Geophysics, 66, 1349, 10.1190/1.1487080
Log Interpretation Chartbook
Malvic, 2008, Significance of the amplitude attribute in porosity prediction, Drava Depression Case Study, NAFTA, 59, 39
Mota, 2010, 2D sections of porosity and water saturation from integrated resistivity and seismic surveys, Near Surface Geophys., 8, 575, 10.3997/1873-0604.2010042
Pan, 1997, An Approach to Reserve Estimation Enhanced with 3-D Seismic Data, Nonrenewable Res., 6, 251, 10.1007/BF02765921
Quist, 1968, Electrical conductance of aqueous sodium chloride solutions from 0 to 800 °C and at pressures to 4000 bars, J. Phys. Chem., 72, 684, 10.1021/j100848a050
Rodi, 2001, Nonlinear conjugate gradients algorithm for 2D magnetotelluric inversion, Geophysics, 66, 174, 10.1190/1.1444893
Rosener, 2007
Sanjuan, 2008, Fluid origin and circulation in the heat exchanger of Soultz-sous-Forêts (France) estimated using geochemical and tracer test data
Sanjuan, 2010, Main characteristics of the deep geothermal brine (5 km) at Soultz-sous-Forêts (France) determined using geochemical and tracer test data, Compt. Rendus Geosci., 342, 546, 10.1016/j.crte.2009.10.009
Sanjuan, 2020, Main geochemical characteristics of the deep geothermal brine at Vendenheim (Alsace, France) with constraints on temperature and fluid circulation
Spichak, 2020
Spichak, 2016, Estimate of seismic velocities and resistivity of rocks from electromagnetic and seismic sounding data accordingly, Izvestiya, Phys. Solid Earth, 52, 371, 10.1134/S1069351316030125
Spichak, 2023, Estimating thermophysical rock properties from electromagnetic sounding data and laboratory measurements, Rus. Geol. Geophys., 64, 357, 10.2113/RGG20214450
Spichak, 2015
Spichak, 2016, Porosity estimation at depths below the borehole bottom from resistivity logs and electromagnetic resistivity, Near Surface Geophys., 14, 299, 10.3997/1873-0604.2016019
Spichak, 2022, Permeability estimating beyond boreholes from electrical conductivity data determined from magnetotelluric sounding: Soultz-sous-Forêts site (France) case study, Geothermics, 105, 1102513, 10.1016/j.geothermics.2022.102513
Spichak, 2015, Estimating deep temperatures in the Soultz-sous-Forêts geothermal area (France) from magnetotelluric data, Near Surface Geophys., 13, 397, 10.3997/1873-0604.2015014
Surma, 2003
Ucok, 1979, 164
Urang, 2020, A new approach for porosity and permeability prediction from well logs using artificial neural network and curve fitting techniques: a case study of Niger Delta, Nigeria, J. Appl. Geophys., 183, 10.1016/j.jappgeo.2020.104207
Uyanik, 2019, Estimation of the porosity of clay soils using seismic P and S-wave velocities, J. Appl. Geophys., 10.1016/j.jappgeo.2019.103832
Van Brakel, 1981, Mercury Porosimetry: State of the Art, Powder Technol., 29, 1, 10.1016/0032-5910(81)85001-2
Verma, 2014, 233
Vernoux, 1995
Vidal, 2015, How do permeable fractures in the Triassic sediments of Northern Alsace characterize the top of hydrothermal convective cells? Evidence from Soultz geothermal boreholes (France), Geothermal Energy, 3, 8, 10.1186/s40517-015-0026-4
Vuataz, 1990, Geochemical monitoring of drilling fluids: a powerful tool to forecast and detect formation waters, 177
Wood, 2020, Predicting porosity, permeability and water saturation applying an optimized nearest-neighbour, machine-learning and data-mining network of well-log data, J. Pet. Sci. Eng., 184, 10.1016/j.petrol.2019.106587
