Pore-tuning to boost the electrocatalytic activity of polymeric micelle-templated mesoporous Pd nanoparticles

Chemical Science - Tập 10 Số 14 - Trang 4054-4061
Cuiling Li1,2,3,4, Muhammad Iqbal3,5,6,7,8, Bo Jiang6,9,10,11, Zhongli Wang6,9,10,11, Jeonghun Kim3,7,8,12,13, Ashok Kumar Nanjundan14,15,13,16, Andrew E. Whitten14,17, Kathleen Wood14,17, Yusuke Yamauchi3,18,7,8,13
1Beijing 100081
2 Beijing Institute of Technology
3China
4School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
5College of Chemistry and Molecular Engineering
6International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
7Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, China
8Qingdao 266042
9Japan
10National Institute for Materials Science (NIMS)
11Tsukuba
12Qingdao University of Science and Technology (QUST)
13School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, QLD 4072, Australia
14Australia
15Brisbane
16University of Queensland
17Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, NSW, 2234, Australia
18Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, South Korea

Tóm tắt

Understanding how mesoporous noble metal architectures affect electrocatalytic performance is very important for the rational design and preparation of high-performance electrocatalysts.

Từ khóa


Tài liệu tham khảo

Kim, 2016, Nature, 535, 131, 10.1038/nature18284

Li, 2014, Nat. Commun., 5, 3247, 10.1038/ncomms4247

Malgras, 2016, Adv. Mater., 28, 993, 10.1002/adma.201502593

Zhu, 2016, Adv. Healthcare Mater., 5, 3165, 10.1002/adhm.201601058

Yang, 1998, Nature, 396, 152, 10.1038/24132

Han, 2009, Nat. Chem., 1, 123, 10.1038/nchem.166

Han, 2011, J. Am. Chem. Soc., 133, 11524, 10.1021/ja200683t

Takai, 2010, J. Am. Chem. Soc., 132, 208, 10.1021/ja9062844

David, 2004, Nat. Mater., 3, 787, 10.1038/nmat1206

Wang, 2012, Angew. Chem., Int. Ed., 51, 4872, 10.1002/anie.201107376

Xiao, 2014, Nanoscale, 6, 4345, 10.1039/C3NR06843A

Lin, 2002, Acc. Chem. Res., 35, 927, 10.1021/ar000074f

Guan, 2018, Angew. Chem., Int. Ed., 57, 6176, 10.1002/anie.201801876

Li, 2015, Nat. Commun., 6, 6608, 10.1038/ncomms7608

Li, 2016, Angew. Chem., Int. Ed., 55, 12746, 10.1002/anie.201606031

Jiang, 2017, Nat. Commun., 8, 15581, 10.1038/ncomms15581

Jiang, 2016, Angew. Chem., Int. Ed., 55, 10037, 10.1002/anie.201603967

Li, 2015, Angew. Chem., Int. Ed., 54, 11073, 10.1002/anie.201505232

Crossland, 2013, Nat. Chem., 495, 215

Shibata, 2006, Chem. Mater., 18, 2256, 10.1021/cm0524042

Hu, 2018, Nanoscale, 10, 18473, 10.1039/C8NR06149A

Wood, 2018, J. Appl. Crystallogr., 51, 294, 10.1107/S1600576718002534

Kline, 2006, Appl. Crystallogr., 39, 895, 10.1107/S0021889806035059

Wang, 2009, J. Am. Chem. Soc., 131, 9152, 10.1021/ja902485x

Jiang, 2015, Adv. Sci., 2, 1500112, 10.1002/advs.201500112

Huo, 1995, Science, 268, 1324, 10.1126/science.268.5215.1324

Mao, 2017, Sci. Adv., 3, e1603068, 10.1126/sciadv.1603068

Rizo, 2018, J. Am. Chem. Soc., 140, 3791, 10.1021/jacs.8b00588

Li, 2013, J. Am. Chem. Soc., 135, 132, 10.1021/ja306384x

Du, 2012, ACS Catal., 2, 287, 10.1021/cs2005955

Sheng, 2014, J. Phys. Chem. C, 118, 5762, 10.1021/jp407978h

Zhou, 2010, Electrochim. Acta, 55, 7995, 10.1016/j.electacta.2010.02.071

Fang, 2010, J. Power Sources, 195, 1375, 10.1016/j.jpowsour.2009.09.025

Rizo, 2018, J. Am. Chem. Soc., 140, 3791, 10.1021/jacs.8b00588

Wen, 2014, J. Am. Chem. Soc., 136, 2727, 10.1021/ja412062e

Shen, 2010, Int. J. Hydrogen Energy, 35, 12911, 10.1016/j.ijhydene.2010.08.107

Tang, 2009, Adv. Funct. Mater., 19, 2782, 10.1002/adfm.200900377

Franceschini, 2013, ACS Appl. Mater. Interfaces, 5, 10437, 10.1021/am403471c