Các tế bào gốc có nguồn gốc từ vỏ buồng trứng heo có thể biệt hóa thành tế bào nội mạch trong môi trường vitro

Springer Science and Business Media LLC - Tập 156 - Trang 349-362 - 2021
Kamil Wartalski1, Gabriela Gorczyca2, Jerzy Wiater1, Zbigniew Tabarowski3, Małgorzata Duda2
1Faculty of Medicine, Department of Histology, Jagiellonian University Medical College, Krakow, Poland
2Faculty of Biology, Institute of Zoology and Biomedical Research, Department of Endocrinology, Jagiellonian University in Krakow, Krakow, Poland
3Faculty of Biology, Institute of Zoology and Biomedical Research, Department of Experimental Hematology, Jagiellonian University in Krakow, Krakow, Poland

Tóm tắt

Tế bào nội mạch (ECs), thành phần chính của hệ mạch, đóng vai trò quan trọng trong quá trình hình thành mạch mới. Tuy nhiên, số lượng tế bào nội mạch nội sinh là không đủ cho cả mục đích nghiên cứu và ứng dụng lâm sàng. Tế bào gốc tiềm năng từ buồng trứng heo (poPSCs), mặc dù không phải là tế bào đa năng, nhưng được đặc trưng bởi tính linh hoạt lớn. Do đó, nghiên cứu này nhằm mục đích điều tra xem liệu poPSCs có tiềm năng biệt hóa thành các tế bào thuộc dòng nội mạch hay không. poPSCs đã được tách biệt bằng phương pháp miễn dịch từ buồng trứng heo sau sinh dựa trên sự hiện diện của protein SSEA-4. Sự biểu hiện của các dấu hiệu tế bào gốc trung mô (MSCs) sau khi tiền nuôi cấy, cả ở mức độ mRNA: ITGB1, THY và ENG cũng như protein tương ứng: CD29, CD90 và CD105, cao hơn một cách đáng kể so với các tế bào vỏ buồng trứng đối chứng. Để khiến poPSCs biệt hóa thành ECs, môi trường kích thích chứa yếu tố tăng trưởng nội mạch (VEGF), yếu tố tăng trưởng fibroblast cơ bản (bFGF), yếu tố tăng trưởng giống insulin (IGF), yếu tố tăng trưởng bề mặt (EGF), acid ascorbic, và heparin đã được áp dụng. Sau 14 ngày, quá trình biệt hóa poPSCs thành ECs đã được xác nhận bằng cách nhuộm miễn dịch huỳnh quang cho cadherin nội mạch (VECad) và thụ thể yếu tố tăng trưởng nội mạch-2 (VEGFR-2). Phân tích WB bán định lượng các protein này đã xác nhận sự phong phú cao của chúng. Thêm vào đó, qRT-PCR cho thấy rằng sự biểu hiện mRNA của các gen đánh dấu tương ứng: CDH5, KDR cao hơn đáng kể so với poPSCs chưa biệt hóa. Cuối cùng, trạng thái chức năng của các tế bào nội mạch được xác nhận thông qua thử nghiệm di chuyển đã cho thấy rằng chúng có khả năng hoá hướng dương, trong khi thử nghiệm hình thành ống chứng minh khả năng phát triển mạng lưới mao mạch. Cuối cùng, các kết quả của chúng tôi đã cung cấp bằng chứng rằng poPSCs có thể cấu thành quần thể MSC trong buồng trứng và xác nhận rằng chúng có thể là một nguồn tiềm năng cho tế bào nội mạch trong kỹ thuật mô.

Từ khóa

#tế bào nội mạch #tế bào gốc tiềm năng #buồng trứng heo #biệt hóa tế bào #kỹ thuật mô

Tài liệu tham khảo

Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53. https://doi.org/10.1038/nrn1824 Ahmed N, Thompson EW, Quinn MA (2007) Epithelial-mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm. J Cell Physiol 213:581–588. https://doi.org/10.1002/jcp.21240 Aird WC (2007a) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100:158–173. https://doi.org/10.1161/01.RES.0000255691.76142.4a Aird WC (2007b) Phenotypic heterogeneity of the endothelium: II. Representative vascular Beds. Circ Res 100:174–190. https://doi.org/10.1161/01.RES.0000255690.03436.ae Aird WC (2012) Endothelial cell heterogeneity. Cold Spring Harb Perspect Med 2:a006429. https://doi.org/10.1101/cshperspect.a006429 Araña M, Mazo M, Aranda P, Pelacho B, Prosper F (2013) Adipose tissue-derived mesenchymal stem cells: isolation, expansion, and characterization. Methods Mol Biol Clifton NJ 1036:47–61. https://doi.org/10.1007/978-1-62703-511-8_4 Baksh D, Song L, Tuan RS (2004) Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 8:301–316. https://doi.org/10.1111/j.1582-4934.2004.tb00320.x Bara JJ, Richards RG, Alini M, Stoddart MJ (2014) Concise review: bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: Implications for basic research and the clinic. Stem Cells 32:1713–1723. https://doi.org/10.1002/stem.1649 Bhartiya D (2015) Ovarian stem cells are always accompanied by very small embryonic-like stem cells in adult mammalian ovary. J Ovarian Res 8:70. https://doi.org/10.1186/s13048-015-0200-0 Bianco P, Cao X, Frenette PS, Mao JJ, Robey PG, Simmons PJ, Wang CY (2013) The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med 19:35–42. https://doi.org/10.1186/s13048-015-0200-0 Bordy R, Totoson P, Prati C, Marie C, Wendling D, Demougeot C (2018) Microvascular endothelial dysfunction in rheumatoid arthritis. Nat Rev Rheumatol 14:404–420. https://doi.org/10.1038/s41584-018-0022-8 Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999 Burian B, Probst F, Palla B, Riedel C, Saller MM, Cornelsen M, Konig F, Schieker M, Otto S (2017) Effect of hypoxia on the proliferation of porcine bone marrow-derived mesenchymal stem cells and adipose-derived mesenchymal stem cells in 2- and 3-dimensional culture. J Craniomaxillofac Surg 45:414–419. https://doi.org/10.1016/j.jcms.2016.12.014 Catacchio I, Berardi S, Reale A, De Luisi A, Racanelli V, Vacca A, Ria R (2013) Evidence for bone marrow adult stem cell plasticity: properties, molecular mechanisms, negative aspects, and clinical applications of hematopoietic and mesenchymal stem cells transdifferentiation. Stem Cells Int 2013:589139. https://doi.org/10.1155/2013/589139 Ceusters J, Lejeune J-P, Sanderson C, Niesten A, Lagneaux L, Serteyn D (2017) From skeletal muscle to stem cells: an innovative minimally-invasive process for multiple species. Sci Rep 7:696. https://doi.org/10.1038/s41598-017-00803-7 Corada M, Liao F, Lindgren M, Lampugnani MG, Breviario F, Frank R, Muller WA, Hicklin DJ, Bohlen P, Dejana E (2001) Monoclonal antibodies directed to different regions of vascular endothelial cadherin extracellular domain affect adhesion and clustering of the protein and modulate endothelial permeability. Blood 97:1679–1684. https://doi.org/10.1182/blood.v97.6.1679 Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313. https://doi.org/10.1016/j.stem.2008.07.003 Crisan M, Corselli M, Chen WC, Peault B (2012) Perivascular cells for regenerative medicine. J Cell Mol Med 16:2851–2860. https://doi.org/10.1111/j.1582-4934.2012.01617.x De Luca M, Aiuti A, Cossu G, Parmar M, Pellegrini G, Robey PG (2019) Advances in stem cell research and therapeutic development. Nat Cell Biol 21:801–811. https://doi.org/10.1038/s41556-019-0344-z D’Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971–2981. https://doi.org/10.1242/jcs.01103 Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317. https://doi.org/10.1080/14653240600855905 Dudley AC (2012) Tumor endothelial cells. Cold Spring Harb Perspect Med 2:a006536. https://doi.org/10.1101/cshperspect.a006536 Esmaeilian Y, Atalay A, Erdemli E (2017) Putative germline and pluripotent stem cells in adult mouse ovary and their in vitro differentiation potential into oocyte-like and somatic cells. Zygote 25:358–375. https://doi.org/10.1017/S0967199417000235 Galipeau J, Sensébé L (2018) Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell 22:824–833. https://doi.org/10.1016/j.stem.2018.05.004 Galliot B, Ghila L (2010) Cell plasticity in homeostasis and regeneration. Mol Reprod Dev 77:837–855. https://doi.org/10.1002/mrd.21206 Gorczyca G, Wartalski K, Tabarowski Z, Duda M (2019) Effects of vinclozolin exposure on the expression and activity of SIRT1 and SIRT6 in the porcine ovary. J Physiol Pharmacol 70:153–165. https://doi.org/10.26402/jpp.2019.1.15 Grompe M (2002) Adult versus embryonic stem cells: it’s still a tie. Mol Ther 6:303–305. https://doi.org/10.1006/mthe.2002.0687 Herbst RS (2004) Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 59:21–26. https://doi.org/10.1016/j.ijrobp.2003.11.041 Hill AB, Hill JE, Bressan FF, Miglino MA, Garcia JM (2018) Derivation and differentiation of canine ovarian mesenchymal stem cells. J vis Exp 142:e58163. https://doi.org/10.3791/581633 Hollenberg MD, Gregory H (1980) Epidermal growth factor-urogastrone: biological activity and receptor binding of derivatives. Mol Pharmacol 17:314–320 Holmes K, Roberts OL, Thomas AM, Cross MJ (2007) Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 19:2003–2012. https://doi.org/10.1016/j.cellsig.2007.05.013 Hryhorowicz M, Zeyland J, Słomski R, Lipiński D (2017) Genetically modified pigs as organ donors for xenotransplantation. Mol Biotechnol 59:435–444. https://doi.org/10.1007/s12033-017-0024-9 Ikhapoh IA, Pelham CJ, Agrawal DK (2015) Sry-type HMG box 18 contributes to the differentiation of bone marrow-derived mesenchymal stem cells to endothelial cells. Differentiation 89:87–96. https://doi.org/10.1016/j.diff.2015.03.003 Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49. https://doi.org/10.1038/nature00870 Juin P, Hueber AO, Littlewood T, Evan G (1999) c-Myc-induced sensitization to apoptosis is mediated through cytochrome c release. Genes Dev 13:1367–1381. https://doi.org/10.1101/gad.13.11.1367 Justus CR, Leffler N, Ruiz-Echevarria M, Yang LV (2014) In vitro cell migration and invasion assays. J vis Exp 88:51046. https://doi.org/10.3791/51046 Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cell 24:1294–1301. https://doi.org/10.1634/stemcells.2005-0342 Koizumi K, Wang G, Park L (2016) Endothelial dysfunction and amyloid-β-induced neurovascular alterations. Cell Mol Neurobiol 36:155–165. https://doi.org/10.1007/s10571-015-0256-9 Kramer N, Walzl A, Unger C, Rosner M, Krupitza G, Hengstschläger M, Dolznig H (2013) In vitro cell migration and invasion assays. Mutat Res 752:10–24. https://doi.org/10.1016/j.mrrev.2012.08.001 Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0 Lee YM, Kumar BM, Lee JH, Lee WJ, Kim TH, Lee SL, Rho GJ (2013) Characterisation and differentiation of porcine ovarian theca-derived multipotent stem cells. Vet J 197:761–768. https://doi.org/10.1016/j.tvjl.2013.04.011 Li L, Clevers H (2010) Coexistence of quiescent and active adult stem cells in mammals. Science 327:542–545. https://doi.org/10.1126/science.1180794 Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆Ct method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262 Mahla RS (2016) Stem cells applications in regenerative medicine and disease therapeutics. Int J Cell Biol 2016:6940283. https://doi.org/10.1155/2016/6940283 Mimeault M, Hauke R, Batra SK (2007) Stem cells: a revolution in therapeutics—recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther 82:252–264. https://doi.org/10.1038/sj.clpt.6100301 Morrison S, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132:598–611. https://doi.org/10.1016/j.cell.2008.01.038 Nakatsu MN, Hughes CC (2008) An optimized three-dimensional in vitro model for the analysis of angiogenesis. Methods Enzymol 443:65–82. https://doi.org/10.1016/S0076-6879(08)02004-1 NIH Stem Cell Information Home Page. In Stem Cell Information. Bethesda, MD: National Institutes of Health, US Department of Health and Human Services, 2016 https://stemcells.nih.gov/info/2001report/chapter4.htm Oswald J, Boxberger S, Jorgensen B, Feldman S, Ehninger B, Bornhauser M, Werner C (2004) Mesenchymal stem cells can de differentiated into endothelial cells in vitro. Stem Cells 22:377–384. https://doi.org/10.1634/stemcells.22-3-377 Pankajakshan D, Kansal V, Agrawal DK (2013) In vitro differentiation of bone marrow derived porcine mesenchymal stem cells to endothelial cells. J Tissue Eng Reg Med 7:911–920. https://doi.org/10.1002/term.1483 Parte S, Patel H, Sriraman K, Bhartiya D (2015) Isolation and characterization of stem cells in the adult mammalian ovary. Methods Mol Biol 1235:203–229. https://doi.org/10.1007/978-1-4939-1785-3_16 Patel H, Bhartiya D, Parte S (2018) Further characterization of adult sheep ovarian stem cells and their involvement in neo-oogenesis and follicle assembly. J Ovarian Res 11:3. https://doi.org/10.1186/s13048-017-0377-5 Peruzzi F, Prisco M, Dews M, Salomoni P, Grassilli E, Romano G, Calabretta B, Baserga R (1999) Multiple signaling pathways of the insulin-like growth factor 1 receptor in protection from apoptosis. Mol Cell Biol 19:7203–7215. https://doi.org/10.1128/mcb.19.10.7203 Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147. https://doi.org/10.1126/science.284.5411.143 Quan R, Du W, Zheng X, Xu S, Li Q, Ji X, Yang D (2017) VEGF165 induces differentiation of hair follicle stem cells into endothelial cells and plays a role in in vivo angiogenesis. J Cell Mol Med 21:1593–1604. https://doi.org/10.1111/jcmm.13089 Raff M (2003) Adult stem cell plasticity: fact or artifact? Annu Rev Cell Dev Biol 19:1–22. https://doi.org/10.1146/annurev.cellbio.19.111301.143037 Rennerfeldt DA, Van Vliet KJ (2016) Concise review: when colonies are not clones: evidence and implications of intracolony heterogeneity in Mesenchymal Stem Cells. Stem Cells 34:1135–1141. https://doi.org/10.1002/stem.2296 Rennerfeldt DA, Raminhos JS, Leff SM, Manning P, Van Vliet KJ (2019) Emergent heterogeneity in putative mesenchymal stem cell colonies: single-cell time lapsed analysis. PLoS ONE 14:e0213452. https://doi.org/10.1371/journal.pone.0213452 Ryczek N, Hryhorowicz M, Zeyland J, Lipiński D, Słomski R (2021) CRISPR/Cas technology in pig-to-human xenotransplantation research. Int J Mol Sci 22:3196. https://doi.org/10.3390/ijms22063196 Saalbach A, Haustein UF, Anderegg U (2000) A ligand of human thy-1 is localized on polymorphonuclear leukocytes and monocytes and mediates the binding to activated thy-1-positive microvascular endothelial cells and fibroblasts. J Invest Dermatol 115:882–888. https://doi.org/10.1046/j.1523-1747.2000.00104.x Sacchetti B, Funari A, Remoli C, Giannicola G, Kogler G, Liedtke S, Bianco P (2016) No identical “mesenchymal stem cells” at different times and sites: human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels. Stem Cell Rep 6:897–913. https://doi.org/10.1016/j.stemcr.2016.05.011 Silva GV, Litovsky S, Assad JA, Sousa AL, Martin BJ, Vela D, Coulter SC, Lin J, Ober J, Vaughn WK, Branco RVC, Oliveira EM, He R, Geng YJ, Willerson JT, Perin EC (2005) Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111:150–156. https://doi.org/10.1161/01.CIR.0000151812.86142.45 Smith NR, Baker D, James NH, Ratcliffe K, Jenkins M, Ashton SE, Sproat G, Swann R, Gray N, Ryan A, Jurgensmeier JM, Womack C (2010) Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers. Clin Cancer Res 16:3548–3561. https://doi.org/10.1158/1078-0432.CCR-09-2797 Soleimani M, Nadri S (2009) A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat Protoc 4:102–106. https://doi.org/10.1038/nprot.2008.221 Stimpfel M, Cerkovnik P, Novakovic S, Maver A, Virant-Klun I (2014) Putative mesenchymal stem cells isolated from adult human ovaries. J Assist Reprod Genet 31:959–974. https://doi.org/10.1007/s10815-014-0254-8 Takahashi H, Shibuya M (2005) The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci 109:227–241. https://doi.org/10.1042/CS20040370 Tancharoen W, Aungsuchawan S, Pothacharoen P, Markmee R, Narakornsak S, Kieodee J, Tasuya W (2017) Differentiation of mesenchymal stem cells from human amniotic fluid to vascular endothelial cells. Acta Histochem 119:113–121. https://doi.org/10.1016/j.acthis.2016.11.009 Tepekoy F, Ozturk S, Sozen B, Ozay RS, Akkoyunlu G, Demir N (2015) CD90 and CD105 expression in the mouse ovary and testis at different stages of postnatal development. Reprod Biol 15:195–204. https://doi.org/10.1016/j.repbio.2015.10.004 Tremain N, Korkko J, Ibberson D, Kopen GC, DiGirolamo C, Phinney DG (2001) MicroSAGE analysis of 2353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages. Stem Cells 19:408–418. https://doi.org/10.1634/stemcells.19-5-408 Vanhoutte PM, Shimokawa H, Félétou M, Tang EH (2017) Endothelial dysfunction and vascular disease—a 30th anniversary update. Acta Physiol 219:22–96. https://doi.org/10.1111/apha.12646 Venturi S, Venturi M (2009) Iodine in evolution of salivary glands and in oral health. Nutr Health 20:119–134. https://doi.org/10.1177/026010600902000204 Vestweber D (2008) VE-Cadherin; the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler Thromb Vasc Biol 28:223–232. https://doi.org/10.1161/ATVBAHA.107.158014 Virant-Klun I, Rožman P, Cvjeticanin B, Vrtacnik-Bokal E, Novakovic S, Rülicke T, Dovc P, Meden-Vrtovec H (2009) Parthenogenetic embryo-like structures in the human ovarian surface epithelium cell culture in postmenopausal women with no naturally present follicles and oocytes. Stem Cells Dev 18:137–150. https://doi.org/10.1089/scd.2007.0238 Wagers AJ, Weissman IL (2004) Plasticity of adult stem cells. Cell 116:639–648. https://doi.org/10.1016/s0092-8674(04)00208-9 Wagner M, Yoshihara M, Douagi I, Damdimopoulos A, Panula S, Petropoulos S, Lu H, Pettersson K, Palm K, Katayama S, Hovatta O, Kere J, Lanner F, Damdimopoulou P (2020) Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells. Nat Commun 11:1147. https://doi.org/10.1038/s41467-020-14936-3 Wartalski K, Tabarowski Z, Duda M (2016) Magnetic isolation and characterization of porcine ovarian putative stem cells (PSCs): an in vitro study. JFIV Reprod Med Genet 4:191. https://doi.org/10.4172/2375-4508.1000191 Wartalski K, Gorczyca G, Wiater J, Tabarowski Z, Palus-Chramiec K, Setkowicz Z, Duda M (2020) Efficient generation of neural-like cells from porcine ovarian putative stem cells–morphological characterization and evaluation of their electrophysiological properties. Theriogenology 155:256–268. https://doi.org/10.1016/j.theriogenology.2020.05.034 Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–168. https://doi.org/10.1016/s0092-8674(00)81692-x Whyte JJ, Prather RS (2011) Genetic modifications of pigs for medicine and agriculture. Mol Reprod Dev 78:879–891. https://doi.org/10.1002/mrd.21333 Wiater J, Niedziela M, Posmysz A, Wartalski K, Gajda B, Smorąg Z, Karasiński J (2018) Identification of perivascular and stromal mesenchymal stem/progenitor cells in porcine endometrium. Reprod Domest Anim 53:333–343. https://doi.org/10.1111/rda.13109 Yazdekhasti H, Hosseini MA, Rajabi Z, Parvari P, Salehnia M, Koruji M, Izadyar F, Aliakbari F, Abbasi M (2017) Improved isolation, proliferation, and differentiation capacity of mouse ovarian putative stem cells. Cell Reprogram 19:132–144. https://doi.org/10.1089/cell.2016.0054 Yoshida A, Anand-Apte B, Zetter BR (1996) Differential endothelial migration and proliferation to basic fibroblast growth factor and vascular endothelial growth factor. Growth Factors 13:57–64. https://doi.org/10.3109/08977199609034566