Virus retro tối sinh từ lợn: phân loại, cấu trúc phân tử, điều tiết, chức năng và rủi ro tiềm tàng trong ghép tế bào giữa các loài

Springer Science and Business Media LLC - Tập 23 - Trang 1-9 - 2023
Yu Liu1, Yifan Niu1, Xiang Ma1,2,3, Yun Xiang4, De Wu5, Weifen Li2, Tao Wang6, Dong Niu1
1College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, China
2College of Animal Sciences, Zhejiang University, Hangzhou, China
3Jinhua Jinfan Feed Co., Ltd, Jinhua, China
4Jinhua Academy of Agricultural Sciences, Jinhua, China
5Postdoctoral Research Station, Jinhua Development Zone, Jinhua, China
6Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, China

Tóm tắt

Ghép tế bào giữa các loài với các cơ quan từ lợn đã được công nhận là một giải pháp đầy hứa hẹn để giảm thiểu tình trạng thiếu hụt cơ quan cho việc ghép tạng ở người. Virus retro tối sinh từ lợn (PERV), có DNA tiên phát được tích hợp trong bộ gen của tất cả các giống lợn, là một trong những rủi ro vi sinh vật chính cho ghép tế bào giữa các loài. Trong vài thập kỷ qua, một số tiến bộ trong nghiên cứu về PERV đã được đạt được. Ở đây, chúng tôi đã tổng hợp những tiến triển hiện tại về PERV, bao gồm phân loại, cấu trúc phân tử, cơ chế điều tiết, chức năng trong hệ miễn dịch và rủi ro tiềm tàng trong ghép tế bào giữa các loài. Chúng tôi cũng đã thảo luận về vấn đề thiếu dữ liệu nghiên cứu về PERV cũng như những câu hỏi cần được giải đáp trong các nghiên cứu trong tương lai.

Từ khóa

#Xenotransplantation; Porcine endogenous retrovirus; PERV; Organ shortage; Immune system

Tài liệu tham khảo

Akiyoshi DE, Denaro M, Zhu H, Greenstein JL, Banerjee P, Fishman JA (1998) Identification of a full-length cDNA for an endogenous retrovirus of miniature swine. J Virol 72(5):4503–4507. https://doi.org/10.1128/jvi.72.5.4503-4507.1998 Armstrong JA, Porterfield JS, De Madrid AT (1971) C-type virus particles in pig kidney cell lines. J Gen Virol 10(2):195–198. https://doi.org/10.1099/0022-1317-10-2-195 Barbalat R, Ewald SE, Mouchess ML, Barton GM (2011) Nucleic acid recognition by the innate immune system. Annu Rev Immunol 29:185–214. https://doi.org/10.1146/annurev-immunol-031210-101340 Blusch JH, Seelmeir S, von der Helm K (2002) Molecular and enzymatic characterization of the porcine endogenous retrovirus protease. J Virol 76(15):7913–7917. https://doi.org/10.1128/jvi.76.15.7913-7917.2002 Bobkova M, Stitz J, Engelstädter M, Cichutek K, Buchholz CJ (2002) Identification of R-peptides in envelope proteins of C-type retroviruses. J Gen Virol 83(Pt 9):2241–2246. https://doi.org/10.1099/0022-1317-83-9-2241 Breese SS Jr (1970) Virus-like particles occurring in cultures of stable pig kidney cell lines. Brief report. Arch Gesamte Virusforsch 30(4):401–404. https://doi.org/10.1007/bf01258369 Chen J, Foroozesh M, Qin Z (2019) Transactivation of human endogenous retroviruses by tumor viruses and their functions in virus-associated malignancies. Oncogenesis 8(1):6. https://doi.org/10.1038/s41389-018-0114-y Chiappinelli KB, Zahnow CA, Ahuja N, Baylin SB (2016) Combining epigenetic and immunotherapy to combat cancer. Cancer Res 76(7):1683–1689. https://doi.org/10.1158/0008-5472.Can-15-2125 Cianciolo GJ, Copeland TD, Oroszlan S, Snyderman R (1985) Inhibition of lymphocyte proliferation by a synthetic peptide homologous to retroviral envelope proteins. Science 230(4724):453–455. https://doi.org/10.1126/science.2996136 Dean TT, Serrão VHB, Lee JE (2022) Structure of the core postfusion porcine endogenous retrovirus fusion protein. mBio 13(1):e0292021. https://doi.org/10.1128/mbio.02920-21 Denner J (2008) Recombinant porcine endogenous retroviruses (PERV-A/C): a new risk for xenotransplantation? Arch Virol 153(8):1421–1426. https://doi.org/10.1007/s00705-008-0141-7 Denner J (2014) The transmembrane proteins contribute to immunodeficiencies induced by HIV-1 and other retroviruses. Aids 28(8):1081–1090. https://doi.org/10.1097/qad.0000000000000195 Denner J (2016) How active are porcine endogenous retroviruses (PERVs)? Viruses 8(8):215. https://doi.org/10.3390/v8080215 Denner J (2021) The origin of porcine endogenous retroviruses (PERVs). Arch Virol 166(4):1007–1013. https://doi.org/10.1007/s00705-020-04925-8 Denner J, Tönjes RR (2012) Infection barriers to successful xenotransplantation focusing on porcine endogenous retroviruses. Clin Microbiol Rev 25(2):318–343. https://doi.org/10.1128/cmr.05011-11 Denner J, Young PR (2013) Koala retroviruses: characterization and impact on the life of koalas. Retrovirology 10:108. https://doi.org/10.1186/1742-4690-10-108 Denner J, Specke V, Thiesen U, Karlas A, Kurth R (2003) Genetic alterations of the long terminal repeat of an ecotropic porcine endogenous retrovirus during passage in human cells. Virology 314(1):125–133. https://doi.org/10.1016/s0042-6822(03)00428-8 Dieckhoff B, Puhlmann J, Büscher K, Hafner-Marx A, Herbach N, Bannert N, Denner J (2007) Expression of porcine endogenous retroviruses (PERVs) in melanomas of Munich miniature swine (MMS) Troll. Vet Microbiol 123(1-3):53–68. https://doi.org/10.1016/j.vetmic.2007.02.024 Dinsmore JH, Manhart C, Raineri R, Jacoby DB, Moore A (2000) No evidence for infection of human cells with porcine endogenous retrovirus (PERV) after exposure to porcine fetal neuronal cells. Transplantation 70(9):1382–1389. https://doi.org/10.1097/00007890-200011150-00020 Garcia-Montojo M, Doucet-O'Hare T, Henderson L, Nath A (2018) Human endogenous retrovirus-K (HML-2): a comprehensive review. Crit Rev Microbiol 44(6):715–738. https://doi.org/10.1080/1040841x.2018.1501345 Godehardt AW, Petkov S, Gulich B, Fischer N, Niemann H, Tönjes RR (2018) Comparative gene expression profiling of pig-derived iPSC-like cells: effects of induced pluripotency on expression of porcine endogenous retrovirus (PERV). Xenotransplantation 25(4):e12429. https://doi.org/10.1111/xen.12429 Godehardt AW, Fischer N, Rauch P, Gulich B, Boller K, Church GM, Tönjes RR (2020) Characterization of porcine endogenous retrovirus particles released by the CRISPR/Cas9 inactivated cell line PK15 clone 15. Xenotransplantation 27(2):e12563. https://doi.org/10.1111/xen.12563 Groh S, Schotta G (2017) Silencing of endogenous retroviruses by heterochromatin. Cell Mol Life Sci 74(11):2055–2065. https://doi.org/10.1007/s00018-017-2454-8 Grow EJ, Flynn RA, Chavez SL, Bayless NL, Wossidlo M, Wesche DJ, Wysocka J (2015) Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 522(7555):221–225. https://doi.org/10.1038/nature14308 Güell M, Niu D, Kan Y, George H, Wang T, Lee IH, Yang L (2017) PERV inactivation is necessary to guarantee absence of pig-to-patient PERVs transmission in xenotransplantation. Xenotransplantation 24(6):e12366. https://doi.org/10.1111/xen.12366 Hartmann K (2012) Clinical aspects of feline retroviruses: a review. Viruses 4(11):2684–2710. https://doi.org/10.3390/v4112684 Huh JW, Cho BW, Kim DS, Ha HS, Noh YN, Yi JM, Kim HS (2007) Long terminal repeats of porcine endogenous retroviruses in Sus scrofa. Arch Virol 152(12):2271–2276. https://doi.org/10.1007/s00705-007-1049-3 Hurst TP, Magiorkinis G (2017) Epigenetic control of human endogenous retrovirus expression: focus on regulation of long-terminal repeats (LTRs). Viruses 9(6):130. https://doi.org/10.3390/v9060130 Johnson WE (2019) Origins and evolutionary consequences of ancient endogenous retroviruses. Nat Rev Microbiol 17(6):355–370. https://doi.org/10.1038/s41579-019-0189-2 Jung YD, Ha HS, Park SJ, Oh KB, Im GS, Kim TH, Kim HS (2013) Identification and promoter analysis of PERV LTR subtypes in NIH-miniature pig. Mol Cells 35(2):99–105. https://doi.org/10.1007/s10059-013-2289-6 Karlas A, Irgang M, Votteler J, Specke V, Ozel M, Kurth R, Denner J (2010) Characterisation of a human cell-adapted porcine endogenous retrovirus PERV-A/C. Ann Transplant 15(2):45–54 Kimsa MC, Strzałka-Mrozik B, Kimsa MW, Kruszniewska-Rajs C, Gola J, Adamska J, Mazurek U (2013) Porcine endogenous retrovirus infection changes the expression of inflammation-related genes in lipopolysaccharide-stimulated human dermal fibroblasts. Ann Transplant 18:576–586. https://doi.org/10.12659/aot.889310 Klutstein M, Nejman D, Greenfield R, Cedar H (2016) DNA methylation in cancer and aging. Cancer Res 76(12):3446–3450. https://doi.org/10.1158/0008-5472.Can-15-3278 Längin M, Mayr T, Reichart B, Michel S, Buchholz S, Guethoff S, Abicht J-M (2018) Consistent success in life-supporting porcine cardiac xenotransplantation. Nature 564(7736):430–433. https://doi.org/10.1038/s41586-018-0765-z Lawrence M, Daujat S, Schneider R (2016) Lateral thinking: how histone modifications regulate gene expression. Trends Genet 32(1):42–56. https://doi.org/10.1016/j.tig.2015.10.007 Le Tissier P, Stoye JP, Takeuchi Y, Patience C, Weiss RA (1997) Two sets of human-tropic pig retrovirus. Nature 389(6652):681–682. https://doi.org/10.1038/39489 Li W, Lee MH, Henderson L, Tyagi R, Bachani M, Steiner J, Nath A (2015) Human endogenous retrovirus-K contributes to motor neuron disease. Sci Transl Med 7(307):307ra153. https://doi.org/10.1126/scitranslmed.aac8201 Lima-Junior DS, Krishnamurthy SR, Bouladoux N, Collins N, Han SJ, Chen EY, Belkaid Y (2021) Endogenous retroviruses promote homeostatic and inflammatory responses to the microbiota. Cell 184(14):3794–3811.e3719. https://doi.org/10.1016/j.cell.2021.05.020 Lin Z, Chang J, Li X, Wang J, Wu X, Liu X, Yu XY (2022) Association of DNA methylation and transcriptome reveals epigenetic etiology of heart failure. Funct Integr Genomics 22(1):89–112. https://doi.org/10.1007/s10142-021-00813-9 Łopata K, Wojdas E, Nowak R, Łopata P, Mazurek U (2018) Porcine endogenous retrovirus (PERV) – molecular structure and replication strategy in the context of retroviral infection risk of human cells. Front Microbiol 9:730. https://doi.org/10.3389/fmicb.2018.00730 Ma X, Zeng W, Wang L, Cheng R, Zhao Z, Huang C, Niu D (2022) Validation of reliable safe harbor locus for efficient porcine transgenesis. Funct Integr Genomics 22(4):553–563. https://doi.org/10.1007/s10142-022-00859-3 Maksakova IA, Mager DL, Reiss D (2008) Keeping active endogenous retroviral-like elements in check: the epigenetic perspective. Cell Mol Life Sci 65(21):3329–3347. https://doi.org/10.1007/s00018-008-8494-3 Matousková M, Vesely P, Daniel P, Mattiuzzo G, Hector RD, Scobie L, Hejnar J (2013) Role of DNA methylation in expression and transmission of porcine endogenous retroviruses. J Virol 87(22):12110–12120. https://doi.org/10.1128/jvi.03262-12 Matsumoto S, Abalovich A, Wechsler C, Wynyard S, Elliott RB (2016) Clinical benefit of islet xenotransplantation for the treatment of type 1 diabetes. EBioMedicine 12:255–262. https://doi.org/10.1016/j.ebiom.2016.08.034 McGrath MS, Decléve A, Lieberman M, Kaplan HS, Weissman IL (1978) Specificity of cell surface virus receptors on radiation leukemia virus and radiation-induced thymic lymphomas. J Virol 28(3):819–827. https://doi.org/10.1128/jvi.28.3.819-827.1978 Mohiuddin MM, Singh AK, Corcoran PC, Thomas Iii ML, Clark T, Lewis BG, Horvath KA (2016) Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun 7:11138. https://doi.org/10.1038/ncomms11138 Morozov VA, Dao Thi VL, Denner J (2013) The transmembrane protein of the human endogenous retrovirus--K (HERV-K) modulates cytokine release and gene expression. PLoS One 8(8):e70399. https://doi.org/10.1371/journal.pone.0070399 Niebert M, Tönjes RR (2005) Evolutionary spread and recombination of porcine endogenous retroviruses in the Suiformes. J Virol 79(1):649–654. https://doi.org/10.1128/jvi.79.1.649-654.2005 Niu D, Wei HJ, Lin L, George H, Wang T, Lee IH, Yang L (2017) Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357(6357):1303–1307. https://doi.org/10.1126/science.aan4187 Niu D, Ma X, Yuan T, Niu Y, Xu Y, Sun Z, Church GM (2021) Porcine genome engineering for xenotransplantation. Adv Drug Deliv Rev 168:229–245. https://doi.org/10.1016/j.addr.2020.04.001 Patience C, Takeuchi Y, Weiss RA (1997) Infection of human cells by an endogenous retrovirus of pigs. Nat Med 3(3):282–286. https://doi.org/10.1038/nm0397-282 Patience C, Switzer WM, Takeuchi Y, Griffiths DJ, Goward ME, Heneine W, Weiss RA (2001) Multiple groups of novel retroviral genomes in pigs and related species. J Virol 75(6):2771–2775. https://doi.org/10.1128/jvi.75.6.2771-2775.2001 Pornillos O, Ganser-Pornillos BK (2019) Maturation of retroviruses. Curr Opin Virol 36:47–55. https://doi.org/10.1016/j.coviro.2019.05.004 Ren Y (2022) Regulatory mechanism and biological function of UHRF1-DNMT1-mediated DNA methylation. Funct Integr Genomics 22(6):1113–1126. https://doi.org/10.1007/s10142-022-00918-9 Reus K, Mayer J, Sauter M, Zischler H, Müller-Lantzsch N, Meese E (2001) HERV-K(OLD): ancestor sequences of the human endogenous retrovirus family HERV-K(HML-2). J Virol 75(19):8917–8926. https://doi.org/10.1128/jvi.75.19.8917-8926.2001 Roulois D, Loo Yau H, Singhania R, Wang Y, Danesh A, Shen SY, De Carvalho DD (2015) DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162(5):961–973. https://doi.org/10.1016/j.cell.2015.07.056 Samblas M, Milagro FI, Martínez A (2019) DNA methylation markers in obesity, metabolic syndrome, and weight loss. Epigenetics 14(5):421–444. https://doi.org/10.1080/15592294.2019.1595297 Schorn AJ, Gutbrod MJ, LeBlanc C, Martienssen R (2017) LTR-retrotransposon control by tRNA-derived small RNAs. Cell 170(1):61–71.e11. https://doi.org/10.1016/j.cell.2017.06.013 Schultz MD, He Y, Whitaker JW, Hariharan M, Mukamel EA, Leung D, Ecker JR (2015) Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 523(7559):212–216. https://doi.org/10.1038/nature14465 Srinivasachar Badarinarayan S, Shcherbakova I, Langer S, Koepke L, Preising A, Hotter D, Sauter D (2020) HIV-1 infection activates endogenous retroviral promoters regulating antiviral gene expression. Nucleic Acids Res 48(19):10890–10908. https://doi.org/10.1093/nar/gkaa832 Stoye JP, Moroni C (1983) Endogenous retrovirus expression in stimulated murine lymphocytes. Identification of a new locus controlling mitogen induction of a defective virus. J Exp Med 157(5):1660–1674. https://doi.org/10.1084/jem.157.5.1660 Tacke SJ, Kurth R, Denner J (2000) Porcine endogenous retroviruses inhibit human immune cell function: risk for xenotransplantation? Virology 268(1):87–93. https://doi.org/10.1006/viro.1999.0149 Tacke SJ, Specke V, Denner J (2003) Differences in release and determination of subtype of porcine endogenous retroviruses produced by stimulated normal pig blood cells. Intervirology 46(1):17–24. https://doi.org/10.1159/000068120 Takeuchi Y, Patience C, Magre S, Weiss RA, Banerjee PT, Le Tissier P, Stoye JP (1998) Host range and interference studies of three classes of pig endogenous retrovirus. J Virol 72(12):9986–9991. https://doi.org/10.1128/jvi.72.12.9986-9991.1998 Tang Y, Woodward BO, Pastor L, George AM, Petrechko O, Nouvet FJ, Hildreth JEK (2020) Endogenous retroviral envelope syncytin induces HIV-1 spreading and establishes HIV reservoirs in placenta. Cell Rep 30(13):4528–4539.e4524. https://doi.org/10.1016/j.celrep.2020.03.016 Todaro GJ, Benveniste RE, Lieber MM, Sherr CJ (1974) Characterization of a type C virus released from the porcine cell line PK(15). Virology 58(1):65–74. https://doi.org/10.1016/0042-6822(74)90141-x Tönjes RR, Niebert M (2003) Relative age of proviral porcine endogenous retrovirus sequences in Sus scrofa based on the molecular clock hypothesis. J Virol 77(22):12363–12368. https://doi.org/10.1128/jvi.77.22.12363-12368.2003 van der Kuyl AC (2012) HIV infection and HERV expression: a review. Retrovirology 9:6. https://doi.org/10.1186/1742-4690-9-6 Weiss RA (2006) The discovery of endogenous retroviruses. Retrovirology 3:67. https://doi.org/10.1186/1742-4690-3-67 Wilson CA, Wong S, VanBrocklin M, Federspiel MJ (2000) Extended analysis of the in vitro tropism of porcine endogenous retrovirus. J Virol 74(1):49–56. https://doi.org/10.1128/jvi.74.1.49-56.2000 Wolf G, Nielsen AL, Mikkelsen JG, Pedersen FS (2013) Epigenetic marking and repression of porcine endogenous retroviruses. J Gen Virol 94(Pt 5):960–970. https://doi.org/10.1099/vir.0.049288-0 Wynyard S (2020) Challenges and practical realities of long-term patient follow-up in three xeno-islet clinical trials: the experience in pig islet xenotransplantation trials in New Zealand and Argentina. Xenotransplantation 27(3):e12605. https://doi.org/10.1111/xen.12605 Wynyard S, Nathu D, Garkavenko O, Denner J, Elliott R (2014) Microbiological safety of the first clinical pig islet xenotransplantation trial in New Zealand. Xenotransplantation 21(4):309–323. https://doi.org/10.1111/xen.12102 Yang L, Güell M, Niu D, George H, Lesha E, Grishin D, Church G (2015) Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350(6264):1101–1104. https://doi.org/10.1126/science.aad1191 Zhang P, Yu P, Wang W, Zhang L, Li S, Bu H (2010) An effective method for the quantitative detection of porcine endogenous retrovirus in pig tissues. In Vitro Cell Dev Biol Anim 46(5):408–410. https://doi.org/10.1007/s11626-009-9264-8 Zhang Y, Li T, Preissl S, Amaral ML, Grinstein JD, Farah EN, Ren B (2019) Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nature genetics 51(9):1380–1388. https://doi.org/10.1038/s41588-019-0479-7 Zhou X, Singh M, Sanz Santos G, Guerlavais V, Carvajal LA, Aivado M, Selivanova G (2021) Pharmacological activation of p53 triggers viral mimicry response thereby abolishing tumor immune evasion and promoting anti-tumor immunity. Cancer Discov 11(12):3090–3105. https://doi.org/10.1158/2159-8290.Cd-20-1741