Động lực quần thể và xác định vi khuẩn nội sinh đối kháng với nấm gây bệnh thực vật ở rễ bông

Microbial Ecology - Tập 59 - Trang 344-356 - 2009
Chun-Hong Li1, Ming-Wen Zhao2, Can-Ming Tang1, Shun-Peng Li2
1College of Agronomy, National Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People’s Republic of China
2College of Life Sciences, Nanjing Agricultural University Key Laboratory for Microbiological Engineering of the Agricultural Environment, Ministry of Agriculture, Nanjing, People’s Republic of China

Tóm tắt

Tiềm năng đối kháng của vi khuẩn nội sinh được tách từ rễ của sáu giống bông ở các giai đoạn phát triển khác nhau đã được xác định trong điều kiện in vitro đối với ba loại tác nhân gây bệnh: Verticillium dahliae Kleb V107 và V396 và Fusarium oxysporum f.sp. vasinfectum (F108). Số lượng vi khuẩn nội sinh đối kháng (AEB) đối với V107, V396 và F108 ở giai đoạn ra hoa và chín thu hoạch cao hơn đáng kể so với giai đoạn mầm. Nhiều AEB được phát hiện có khả năng đối kháng với các tác nhân gây bệnh V396 và F108 so với V107. Kết quả từ phân tích phương sai đa biến cho thấy số lượng AEB có sự khác biệt đáng kể về các yếu tố chính như giống, giai đoạn và tương tác của chúng. Dựa trên phân tích chuỗi 16S rDNA, 39 mẫu phân lập AEB đã đối kháng với V107, V396 và F108 (BAEB) thuộc về bảy chi, trong đó chi Enterobacter (17/39) và Pantoea (14/39) là phổ biến nhất trong số các chủng BAEB. Đặc trưng bởi các dấu vân tay BOX-PCR, 39 chủng BAEB này đại diện cho 35 kiểu cụm khác nhau. Để khám phá các cơ chế đối kháng, phương pháp khuếch tán trong môi trường thạch đã được sử dụng để phát hiện hoạt tính enzyme phân huỷ thành tế bào và sự tiết siderophore. Gần một nửa trong số các chủng BAEB này cho thấy hoạt tính protease và chitinase, trong khi tất cả 39 chủng BAEB đều tiết ra siderophores. Tuy nhiên, hoạt tính pectinase, cellulase và xylanase hầu như không được phát hiện. Một thí nghiệm nảy mầm cho thấy chín trong số 39 chủng BAEB đã cải thiện đáng kể chỉ số sức sống của cây con bông.

Từ khóa

#vi khuẩn nội sinh; đối kháng; nấm gây bệnh thực vật; rễ bông; chỉ số sức sống

Tài liệu tham khảo

Abdul Baki AA, Anderson JD (1973) Vigour determination in soybean seed by multiple criteria. Crop Sci 13:630–633 Allen SJ (2001) Genetic and induced resistance strategies for controlling Fusarium wilt of cotton. Proceedings of the second Australasian Soil borne diseases symposium. Victoria, Australia, pp 59–60 Anith KN, Radhakrishnan NV, Manomohandas TP (2003) Screening of antagonistic bacteria for biological control of nursery wilt of black pepper (Piper nigrum). Microbiol Res 158:91–97 Assigbetse K, Gueye M, Thioulouse J, Duponnois R (2005) Soil bacterial diversity responses to root colonization by an ectomycorrhizal fungus are not root-growth-dependent. Microb Ecol 50:350–359 Bacon CW, Hinton DM (2006) Bacterial endophytes: the endophytic niche its occupants, and its utility. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, The Netherlands, pp 155–194 Berg G, Hallmann J (2006) Control of plant pathogenic fungi with bacterial endophytes. In: Schulz B, Boyle C, Sieber TN (eds) Soil biology, vol 9. microbial root endophytes. Springer, Berlin, pp 53–67 Brooks DS, Gonzalez CF, Appel DN, Filer TH (1994) Evaluation of endophytic bacteria as potential biocontrol agents for oak wilt. Biol Control 4:373–381 Cho KM, Hong SY, Lee SM, Kim YH, Kahng GG, Lim YP, Kim H, Yun HD (2007) Endophytic bacterial communities in ginseng and their antifungal activity against pathogens. Microb Ecol 54:341–351 Daayf F, Nicole M, Boher B, Pando A, Geiger JP (1997) Early vascular defense reaction of cotton roots infected with a defoliating mutant strain of Verticillium dahliae. Eur J Plant Pathol 103:125–136 Dalton DA, Kramer S, Azios N, Fusaro S, Cahill E, Kennedy C (2004) Endophytic nitrogen fixation in dune grasses (Ammophilaarenaria and Elymus mollis) from Oregon. FEMS Microbiol Ecol 49:469–479 Davison J (1988) Plant beneficial bacteria. Biotechnology 6:282–286 Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L ) isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152 Granér G, Persson P, Meijer J, Alström S (2003) A study on microbial diversity in different cultivars of Brassica napusin relation to its wilt pathogen, Verticillium longisporum. FEMS Microbiol Lett 224:269–276 Hallmann J, Hallmann QA, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914 Hallmann J, Quadt HA, Rodrguez R, Kloepper JW (1998) Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biol Biochem 30:925–937 Hardoim PR, Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471 Hinton DM, Bacon CW (1995) Enterobacter cloacae is an endophytic symbiont of corn. Mycopathologia 129:117–125 Jian G, Ma C, Zheng C, Zou Y (2003) Advance in cotton breeding for resistance to Fusarium and Verticillium wilt in the last fifty years in china. Agricultural Sciences in China 2(3):280–288 Kavino M, Harish S, Kumar N, Saravanakumar D, Damodaran T, Soorianathasundaram K, Samiyappan R (2007) Rhizosphere and endophytic bacteria for induction of systemic resistance of banana plantlets against bunchy top virus. Soil Biol Biochem 39:1087–1098 Kloepper JW, Scher FM, Laliberte M, Tipping B (1986) Emergence-promoting rhizobacteria: description, implications for agriculture. In: Swinburne TR (ed) Iron, siderophores, and plant diseases. Plenum, New York, pp 155–164 Kobayashi DY, Columbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White Jr (Eds), Microbial endophytes. Marcel Dekker, New York, pp 199–233 Krechel A, Faupel A, Hallmann J, Ulrich A, Berg G (2002) Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can J Microbiol 48:772–786 Li JG, Jiang ZQ, Xu LP, Sun FF, Guo JH (2008) Characterization of chitinase secreted by Bacillus cereus strain CH2 and evaluation of its efficacy against Verticillium wilt of eggplant. Biocontrol 53:931–944 Lilley AK, Fry JC, Bailey MJ, Day MJ (1996) Comparison of aerobic heterotropic taxa isolated from four root domains of mature sugar beet (Beta vulgaris). FEMS Microbiol Ecol 21:231–242 Madhaiyan M, Saravanan VS, Jovi DB, Lee H, Thenmozhi R, Hari K, Sa T (2004) Occurrence of Gluconacetobacter diazotrophicus in tropical and subtropical plants of Western Ghats, India. Microbiol Res 159:233–243 Mahaffee WF, Kloepper JW (1997) Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with fieldgrown cucumber (Cucumis sativus L). Microb Ecol 34:210–223 McInroy JA, Kloepper JW (1994) Studies on indigenous endophytic bacteria of sweet corn and cotton. In: O'Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms. Biotechnology and the Release of GMOs . VCH, New York, pp 19–27 McInroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342 McInroy JA, Kloepper JW (1995) Population dynamics endophytic bacteria of in field-grown sweet corn and cotton. Can J Microbiol 141:895–901 McInroy JA, Qi W, Mahaffee WM, Lu S, Mei R, Kloepper JW (1997) Comparative evaluation of endophytic bacteria from Chinese and U.S. cotton cultivars. In: Proceedings of the fourth international workshop on plant growth-promoting rhizobacteria. Sapporo, Japan, pp 228–231 Misaghi IJ, Donndelinger CR (1990) Endophytic bacteria in symptom-free cotton plants. Phytopathology 80:808–811 Mocali S, Bertelli E, Di Cello F, Mengoni A, Sfalanga A, Viliani F, Caciotti A, Tegli S, Surico G, Fani R (2003) Fluctuation of bacteria isolated from elm tissues during different seasons and from different plant organs. Res Microbiol 154:105–114 Moore FP, Barac T, Borremans B, Oeyen L, Vangronsveld J, Lelie D, Campbell CD, Moore ERB (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556 Muthukumarasamy R, Cleenwerck I, Revathi G, Vadivelu M, Janssens D, Hoste B, Gum KU, Park KD, Son CY, Sa T, Caballero-Mellado J (2005) Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Syst Appl Microbiol 28:277–286 Nejad P, Johnson PA (2000) Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. Biol Control 18:208–215 Newman LA, Reynolds CM (2005) Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends Biotechnol 23:6–8 Nick G, Räsänen LA, de Lajudie P, Gillis M, Lindström K (1999) Genomic screening of rhizobia isolated from root nodules of tropical leguminous trees using DNA–DNA dot-blot hybridization and rep-PCR. Syst Appl Microbiol 22:287–299 Pamela D, Adams PD, Kloepper JW (2002) Effect of host genotype on indigenous bacterial endophytes of cotton. Plant Soil 240:181–189 Pan MJ, Rademan S, Kuner K, Hastings JW (1997) Ultrastructural studies on the colonisation of banana tissue and Fusarium oxysporum f.sp. cubense race 4 by the endophytic bacterium Burkholeria cepacia. J Phytopathol 145:79–486 Park SR, Kim MK, Kim JO, Bae DW, Cho SJ, Cho YU, Yun HD (2000) Characterization of Erwinia chrysanthemi PY35 cel and pel gene existing in tandem and rapid identification of their gene products. Biochem Biophys Res Commun 268:420–425 Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communitiesin potato plants to infection with Erwinia carotovora subsp.atroseptica. Appl Environ Microbiol 68:2261–2268 Rohlf FJ (2002) NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.10.Exeter Software, New York Schnathorst WC (1981) Life cycle and epidemiology of Verticillium. In: Mace ME, Bell AA, Beckman CH (eds) Fungal wilt disease of plants. Academic, New York, pp 81–111 Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56 Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant growth-promoting abilities. Can J Microbiol 50:239–249 Sheng X, Chen X, He L (2008) Characteristics of an endophytic pyrene-degrading bacterium of Enterobacter sp. 12 J1 from Allium macrostemon Bunge. Int Biodeterior Biodegrad 62:88–95 Sturz AV, Christie BR, Matheson BG, Arsenault WJ, Buchanan NA (1999) Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to soil borne plant pathogens. Plant Pathol 48:360–369 Sturz AV, Matheson BG (1996) Populations of endophytic bacteria which influence host-resistance to Erwinia-induced bacterial soft rot in potato tubers. Plant Soil 184:265–271 Surette MA, Sturz AV, Rajasekaran R, Lada RR, Nowak J (2003) Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): their localization, population density, biodiversity and their effects on plant growth. Plant Soil 253:381–390 Suto M, Takebayashi M, Saito K, Tanaka M, Yokota A, Tomita F (2002) Endophytes as producers of xylanase. J Biosci Bioeng 93(1):88–90 Suzuki MT, Rappé MS, Haimberger ZW, Winfield H, Adair N, Ströbel J, Giovannoni SJ (1997) Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Appl Environ Microbiol 63:983–989 Tan HM, Cao LX, He ZF, Su GJ, Lin B, Zhou SN (2006) Isolation of endophytic actinomycetes from different cultivars of tomato and their activities against Ralstonia solanacearum in vitro. World J Microbiol Biotechnol 22:1275–1280 Trivedi P, Pandey A, Palni LMS (2008) In vitro evaluation of antagonistic properties of Pseudomonas corrugata. Microbiol Res 163:329–336 Tsavkelova EA, Cherdyntseva TA, Botina SG, Netrusov AI (2007) Bacteria associated with orchid roots and microbial production of auxin. Microbiol Res 162:69–76 Van Buren AM, Andre C, Ishmaru CA (1993) Biological control of the bacterial ring rot pathogen by endophytic bacteria isolated from potato. Phytopathology 83:1406