Pop-up paper electrochemical device for label-free hepatitis B virus DNA detection
Tóm tắt
Từ khóa
Tài liệu tham khảo
Rapisarda, 2016, Hepatocellular carcinoma and the risk of occupational exposure, World J. Hepatol., 8, 573, 10.4254/wjh.v8.i13.573
Coffin, 2019, New and Old Biomarkers for Diagnosis and Management of Chronic Hepatitis B Virus Infection, Gastroenterology., 156, 355, 10.1053/j.gastro.2018.11.037
WHO, 2017
Liu, 2015, Rapid and quantitative detection of hepatitis B virus, World J. Gastroenterol., 21, 11954, 10.3748/wjg.v21.i42.11954
National Institute for Health and Care Excellence, 2013, 1
Kolosova, 2019, Triple Amplification Strategy for the Improved Efficiency of a Microplate-Based Assay for the Chemiluminescent Detection of DNA, Anal. Lett., 52, 1352, 10.1080/00032719.2018.1539091
Ammanath, 2019, Flow-through colorimetric assay for detection of nucleic acids in plasma, Anal. Chim. Acta., 1066, 102, 10.1016/j.aca.2019.03.036
Li, 2019, Sample-to-Answer Hepatitis B Virus DNA Detection from Whole Blood on a Centrifugal Microfluidic Platform with Double Rotation Axes, ACS Sensors., 4, 2738, 10.1021/acssensors.9b01270
Shuai, 2017, Sandwich-type microRNA biosensor based on magnesium oxide nanoflower and graphene oxide–gold nanoparticles hybrids coupling with enzyme signal amplification, Sensors Actuators B Chem., 243, 403, 10.1016/j.snb.2016.12.001
Shuai, 2017, Au nanoparticles/hollow molybdenum disulfide microcubes based biosensor for microRNA-21 detection coupled with duplex-specific nuclease and enzyme signal amplification, Biosens. Bioelectron., 89, 989, 10.1016/j.bios.2016.10.051
Shuai, 2017, Ultrasensitive electrochemical biosensing platform based on spherical silicon dioxide/molybdenum selenide nanohybrids and triggered Hybridization Chain Reaction, Biosens. Bioelectron., 94, 616, 10.1016/j.bios.2017.03.058
Wang, 2020, Construction of sandwiched self-powered biosensor based on smart nanostructure and capacitor: Toward multiple signal amplification for thrombin detection, Sensors Actuators B Chem., 304, 10.1016/j.snb.2019.127418
Wang, 2020, Boosting performance of self-powered biosensing device with high-energy enzyme biofuel cells and cruciform DNA, Nano Energy., 68, 10.1016/j.nanoen.2019.104310
Martinez, 2007, Patterned paper as a platform for inexpensive, low-volume, portable bioassays, Angew. Chemie - Int. Ed., 46, 1318, 10.1002/anie.200603817
Dong, 2019, Shaping up field-deployable nucleic acid testing using microfluidic paper-based analytical devices, Anal. Bioanal. Chem., 411, 4401, 10.1007/s00216-019-01595-7
Noiphung, 2019, Multifunctional Paper-Based Analytical Device for In Situ Cultivation and Screening of Escherichia coli Infections, Sci. Rep., 9, 1, 10.1038/s41598-018-38159-1
Liu, 2019, A colorimetric assay system for dopamine using microfluidic paper-based analytical devices, Talanta., 194, 171, 10.1016/j.talanta.2018.10.039
Cincotto, 2019, A new disposable microfluidic electrochemical paper-based device for the simultaneous determination of clinical biomarkers, Talanta., 195, 62, 10.1016/j.talanta.2018.11.022
Carrell, 2019, Rotary manifold for automating a paper-based Salmonella immunoassay, RSC Adv., 9, 29078, 10.1039/C9RA07106G
Teengam, 2018, Electrochemical impedance-based DNA sensor using pyrrolidinyl peptide nucleic acids for tuberculosis detection, Anal. Chim. Acta., 1044, 102, 10.1016/j.aca.2018.07.045
Li, 2015, Detection of Hepatitis B Virus DNA with a Paper Electrochemical Sensor, Anal. Chem., 87, 9009, 10.1021/acs.analchem.5b02210
Wang, 2016, A Paper-Based Pop-up Electrochemical Device for Analysis of Beta-Hydroxybutyrate, Anal. Chem., 88, 6326, 10.1021/acs.analchem.6b00568
Vilaivan, 2006, Hybridization of pyrrolidinyl peptide nucleic acids and DNA: Selectivity, base-pairing specificity, and direction of binding, Org. Lett., 8, 1897, 10.1021/ol060448q
Vilaivan, 2015, Pyrrolidinyl PNA with α/β-Dipeptide Backbone: From Development to Applications, Acc. Chem. Res., 48, 1645, 10.1021/acs.accounts.5b00080
Jampasa, 2014, Electrochemical detection of human papillomavirus DNA type 16 using a pyrrolidinyl peptide nucleic acid probe immobilized on screen-printed carbon electrodes, Biosens. Bioelectron., 54, 428, 10.1016/j.bios.2013.11.023
Jampasa, 2018, A new DNA sensor design for the simultaneous detection of HPV type 16 and 18 DNA, Sensors Actuators, B Chem., 265, 514, 10.1016/j.snb.2018.03.045
Kangkamano, 2018, Pyrrolidinyl PNA polypyrrole/silver nanofoam electrode as a novel label-free electrochemical miRNA-21 biosensor, Biosens. Bioelectron., 102, 217, 10.1016/j.bios.2017.11.024
Ditmangklo, 2019, Clickable styryl dyes for fluorescence labeling of pyrrolidinyl PNA probes for the detection of base mutations in DNA, Org. Biomol. Chem., 10.1039/C9OB01492F
Jirakittiwut, 2015, Pyrrolidinyl peptide nucleic acids immobilised on cellulose paper as a DNA sensor, RSC Adv., 5, 24110, 10.1039/C4RA15287E
Leekrajang, 2019, Filter paper grafted with epoxide-based copolymer brushes for activation-free peptide nucleic acid conjugation and its application for colorimetric DNA detection, Colloids Surfaces B Biointerfaces., 173, 851, 10.1016/j.colsurfb.2018.09.067
Salimian, 2019, Enhanced Electrochemical Activity of a Hollow Carbon Sphere/Polyaniline-Based Electrochemical Biosensor for HBV DNA Marker Detection, ACS Biomater. Sci. Eng., 5, 2587, 10.1021/acsbiomaterials.8b01520
Kannan, 2019, Cobalt Oxide Porous Nanocubes-Based Electrochemical Immunobiosensing of Hepatitis B Virus DNA in Blood Serum and Urine Samples, Anal. Chem., 91, 5824, 10.1021/acs.analchem.9b00153
Mao, 2016, Colorimetric detection of hepatitis B virus (HBV) DNA based on DNA-templated copper nanoclusters, Anal. Chim. Acta., 909, 101, 10.1016/j.aca.2016.01.009
Dungchai, 2009, Electrochemical detection for paper-based microfluidics, Anal. Chem., 81, 5821, 10.1021/ac9007573
Sirvio, 2011, Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators, Carbohydr. Polym., 83, 1293, 10.1016/j.carbpol.2010.09.036
Zhang, 2013, Three-dimensional paper-based electrochemiluminescence device for simultaneous detection of Pb2+ and Hg2+ based on potential-control technique, Biosens. Bioelectron., 41, 544, 10.1016/j.bios.2012.09.022
Pelton, 2009, Bioactive paper provides a low-cost platform for diagnostics, TrAC Trends Anal. Chem., 28, 925, 10.1016/j.trac.2009.05.005
Sugiyama, 2006, Influence of hepatitis B virus genotypes on the intra- and extracellular expression of viral DNA and antigens, Hepatology, 44, 915, 10.1002/hep.21345
Wang, 1998, Indicator-free electrochemical DNA hybridization biosensor, Anal. Chim. Acta., 375, 197, 10.1016/S0003-2670(98)00503-0
Paleček, 2012, Electrocatalysis in proteins, nucleic acids and carbohydrates, Chem. Rec., 12, 27, 10.1002/tcr.201100029
Xiang, 2018, A label-free electrochemical platform for the highly sensitive detection of hepatitis B virus DNA using graphene quantum dots, RSC Adv., 8, 1820, 10.1039/C7RA11945C
Wang, 2006, Electrochemical biosensors: Towards point-of-care cancer diagnostics, Biosens. Bioelectron., 21, 1887, 10.1016/j.bios.2005.10.027
Erdem, 2012, Electrochemical monitoring of indicator-free DNA hybridization by carbon nanotubes-chitosan modified disposable graphite sensors, Colloids Surfaces B Biointerfaces., 95, 222, 10.1016/j.colsurfb.2012.02.042
Gao, 2013, Electrochemical synthesis of layer-by-layer reduced graphene oxide sheets/polyaniline nanofibers composite and its electrochemical performance, Electrochim. Acta., 91, 185, 10.1016/j.electacta.2012.12.119
Campos-Ferreira, 2016, Electrochemical DNA biosensor for the detection of human papillomavirus E6 gene inserted in recombinant plasmid, Arab. J. Chem., 9, 443, 10.1016/j.arabjc.2014.05.023
AOAC, 2011, 1
Yao, 2003, 418