Polyurethanes from vegetable oils and applications: a review

Moyeenuddin Ahmad Sawpan1
1Composite Materials Research, Pultron Composites Limited, Gisborne, New Zealand

Tóm tắt

Từ khóa


Tài liệu tham khảo

Dieterich D and Uhlig K (2000) Polyurethanes. Ullmann's encyclopedia of industrial chemistry, Wiley-VCH Verlag GmbH & Co. KGaA

Zhang C, Garrison TF, Madbouly SA, Kessler MR (2017) Recent advances in vegetable oil-based polymers and their composites. Prog Polym Sci 71:91–143. https://doi.org/10.1016/j.progpolymsci.2016.12.009

Ionescu M (2005) Chemistry and technology of polyols for polyurethanes. Rapra Technology

Szycher M (2012) Szycher's handbook of polyurethanes. CRC Press

Chian KS, Gan LH (1998) Development of a rigid polyurethane foam from palm oil. J Appl Polym Sci 68:509–515. https://doi.org/10.1002/(SICI)1097-4628(19980418)68:3<509::AID-APP17>3.0.CO;2-P

Petrović ZS (2008) Polyurethanes from vegetable oils. Polym Rev 48:109–155. https://doi.org/10.1080/15583720701834224

Shen L, Haufe J and Patel MK (2009) Product overview and market projection of emerging bio-based plastics Universiteit Utrecht,

Nohra B, Candy L, Blanco J-F, Guerin C, Raoul Y, Mouloungui Z (2013) From Petrochemical Polyurethanes to Biobased Polyhydroxyurethanes. Macromolecules 46:3771–3792. https://doi.org/10.1021/ma400197c

Alagi P, Hong SC (2015) Vegetable oil-based polyols for sustainable polyurethanes. Macromolecular Research 23:1079–1086. https://doi.org/10.1007/s13233-015-3154-6

Zlatanić A, Lava C, Zhang W, Petrović ZS (2004) Effect of structure on properties of polyols and polyurethanes based on different vegetable oils. J Polym Sci Part B: Polym Phys 42:809–819. https://doi.org/10.1002/polb.10737

Clark A (2001) Low-cost synthesis and evaluation of polymers prepared from oilseed rape and Euphorbia Lagas-cae oils. University of Warwick,

Schäfer HJ (1997) Fatty Acid and Lipid Chemistry. Edited by F. Gunstone. 252 pages, Blackie Academic & Professional, 1996. Price 59 UK£, ISBN 0–751–40253-2. Lipid / Fett 99:449–449. https://doi.org/10.1002/lipi.19970991209

Ni B, Yang L, Wang C, Wang L, Finlow DE (2010) Synthesis and thermal properties of soybean oil-based waterborne polyurethane coatings. J Therm Anal Calorim 100:239–246. https://doi.org/10.1007/s10973-009-0418-4

Campanella A, Bonnaillie LM, Wool RP (2009) Polyurethane foams from soyoil-based polyols. J Appl Polym Sci 112:2567–2578

Zhang C, Xia Y, Chen R, Huh S, Johnston PA, Kessler MR (2013) Soy-castor oil based polyols prepared using a solvent-free and catalyst-free method and polyurethanes therefrom. Green Chemistry 15:1477–1484. https://doi.org/10.1039/C3GC40531A

Chuayjuljit S, Maungchareon A, Saravari O (2010) Preparation and properties of palm oil-based rigid polyurethane nanocomposite foams. J Reinf Plast Compos 29:218–225. https://doi.org/10.1177/0731684408096949

Kong X, Narine SS (2007) Physical properties of polyurethane plastic sheets produced from polyols from canola oil. Biomacromolecules 8:2203–2209

Palaskar DV, Boyer A, Cloutet E, Le Meins J-F, Gadenne B, Alfos C, Farcet C, Cramail H (2012) Original diols from sunflower and ricin oils: Synthesis, characterization, and use as polyurethane building blocks. J Polym Sci Part A: Polym Chem 50:1766–1782. https://doi.org/10.1002/pola.25944

Sharma V, Banait JS, Kundu PP (2009) Swelling kinetics of linseed oil-based nanocomposites. J Appl Polym Sci 114:446–456. https://doi.org/10.1002/app.30523

Pfister DP, Xia Y, Larock RC (2011) Recent advances in vegetable oil-based polyurethanes. ChemSusChem 4:703–717. https://doi.org/10.1002/cssc.201000378

Li Y, Luo X and Hu S (2015) Polyols and Polyurethanes from Vegetable Oils and Their Derivatives. Bio-based Polyols and Polyurethanes, Springer International Publishing, Cham pp. 15–43

Mosiewicki MA, Dell’Arciprete GA, Aranguren MI, Marcovich NE (2009) Polyurethane foams obtained from castor oil-based polyol and filled with wood flour. J Compos Mater 43:3057–3072. https://doi.org/10.1177/0021998309345342

Mutlu H, MAR M (2010) Castor oil as a renewable resource for the chemical industry. Eur J Lipid Sci Technol 112:10–30. https://doi.org/10.1002/ejlt.200900138

Thakur S, Karak N (2013) Bio-based tough hyperbranched polyurethane-graphene oxide nanocomposites as advanced shape memory materials. RSC Adv 3:9476–9482. https://doi.org/10.1039/C3RA40801A

Gunstone FD (2001) Chemical reactions of fatty acids with special reference to the carboxyl group. Eur J Lipid Sci Technol 103:307–314. https://doi.org/10.1002/1438-9312(200105)103:5<307::AID-EJLT307>3.0.CO;2-D

Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502. https://doi.org/10.1021/cr050989d

Abdullah BM, Salimon J (2010) Epoxidation of vegetable oils and fatty acids: catalysts, methods and advantages. J Appl Sci 10:1545–1553

Eychenne V, Mouloungui Z, Gaset A (1998) Thermal behavior of neopentylpolyol esters: Comparison between determination by TGA-DTA and flash point. Thermochimica Acta 320:201–208. https://doi.org/10.1016/S0040-6031(98)00466-3

Guo A, Cho Y, Petrović ZS (2000) Structure and properties of halogenated and nonhalogenated soy-based polyols. J Polym Sci Part A: Polym Chem 38:3900–3910

Caillol S, Desroches M, Boutevin G, Loubat C, Auvergne R, Boutevin B (2012) Synthesis of new polyester polyols from epoxidized vegetable oils and biobased acids. Eur J Lipid Sci Technol 114:1447–1459. https://doi.org/10.1002/ejlt.201200199

Hilker I, Bothe D, Prüss J, Warnecke HJ (2001) Chemo-enzymatic epoxidation of unsaturated plant oils. Chem Eng Sci 56:427–432. https://doi.org/10.1016/S0009-2509(00)00245-1

Zhang C, Madbouly SA, Kessler MR (2015) Biobased polyurethanes prepared from different vegetable oils. ACS Appl Mater Interfaces 7:1226–1233

Du G, Tekin A, Hammond EG, Wood LK (2004) Catalytic epoxidation of methyl linoleate. J Am Oil Chem Soc 81:477–480. https://doi.org/10.1007/s11746-004-0926-3

Campanella A, Baltanas MA, Capel-Sanchez MC, Campos-Martin JM, JLG F (2004) Soybean oil epoxidation with hydrogen peroxide using an amorphous Ti/SiO2 catalyst. Green Chem 6:330–334. https://doi.org/10.1039/B404975F

Mudhaffar Abdullah B, Jumat S (2010) Epoxidation of vegetable oils and fatty acids: catalysts, methods and advantages. J Appl Sci 10:1545–1553. https://doi.org/10.3923/jas.2010.1545.1553

Orellana-Coca C, Billakanti JM, Mattiasson B, Hatti-Kaul R (2007) Lipase mediated simultaneous esterification and epoxidation of oleic acid for the production of alkylepoxystearates. J Mol Catal B: Enzym 44:133–137. https://doi.org/10.1016/j.molcatb.2006.09.002

Petrović ZS, Zhang W, Javni I (2005) Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis. Biomacromolecules 6:713–719

Narine SS, Kong X, Bouzidi L, Sporns P (2007) Physical properties of polyurethanes produced from polyols from seed oils: I. Elastomers. J Am Oil Chem Soc 84:55–63. https://doi.org/10.1007/s11746-006-1006-4

Narayan R, Graiver D, Farminer KW, Tran PT and Tran T (2010) Novel modified fatty acid esters and method of preparation thereof. US20100084603 A1,

Raquez JM, Deléglise M, Lacrampe MF, Krawczak P (2010) Thermosetting (bio)materials derived from renewable resources: A critical review. Prog Polym Sci 35:487–509. https://doi.org/10.1016/j.progpolymsci.2010.01.001

Dahlke B, Hellbardt S, Paetow M, Zech WH (1995) Polyhydroxy fatty acids and their derivatives from plant oils. J Am Oil Chem Soc 72:349–353. https://doi.org/10.1007/bf02541095

Guo A, Demydov D, Zhang W, Petrovic ZS (2002) Polyols and polyurethanes from hydroformylation of soybean oil. J Polym Environ 10:49–52. https://doi.org/10.1023/a:1021022123733

Petrović ZS, Guo A, Javni I, Cvetković I, Hong DP (2008) Polyurethane networks from polyols obtained by hydroformylation of soybean oil. Polym Int 57:275–281

Guo A, Zhang W, Petrovic ZS (2006) Structure–property relationships in polyurethanes derived from soybean oil. J Mater Sci 41:4914–4920. https://doi.org/10.1007/s10853-006-0310-6

Mol JC, Buffon R (1998) Metathesis in oleochemistry. J Braz Chem Soc 9:1–11

Mol JC (1994) Metathesis of unsaturated fatty acid esters and fatty oils. J Mol Catal 90:185–199. https://doi.org/10.1016/0304-5102(94)00009-3

Boelhouwer C, Mol JC (1985) Metathesis reactions of fatty acid esters. Prog Lipid Res 24:243–267. https://doi.org/10.1016/0163-7827(85)90003-7

Desroches M, Escouvois M, Auvergne R, Caillol S, Boutevin B (2012) From vegetable oils to polyurethanes: synthetic routes to polyols and main industrial products. Polym Rev 52:38–79. https://doi.org/10.1080/15583724.2011.640443

Sherman LM (2007) Polyurethanes: bio-based materials capture attention. Plast Technol. https://www.ptonline.com/articles/polyurethanes-bio-based-materials-capture-attention . Accessed 23 Dec 2017

Camara F, Benyahya S, Besse V, Boutevin G, Auvergne R, Boutevin B, Caillol S (2014) Reactivity of secondary amines for the synthesis of non-isocyanate polyurethanes. Eur Polym J 55:17–26. https://doi.org/10.1016/j.eurpolymj.2014.03.011

Guan J, Song Y, Lin Y, Yin X, Zuo M, Zhao Y, Tao X, Zheng Q (2011) Progress in study of non-isocyanate polyurethane. Ind Eng Chem Res 50:6517–6527. https://doi.org/10.1021/ie101995j

Figovsky O, Shapovalov L, Leykin A and Potashnikova R (2013) Recent advances in the development of non-isocyanate polyurethanes based on cyclic carbonates. PU Magazine,

Cornille A, Serres J, Michaud G, Simon F, Fouquay S, Boutevin B, Caillol S (2016) Syntheses of epoxyurethane polymers from isocyanate free oligo-polyhydroxyurethane. Eur Polym J 75:175–189. https://doi.org/10.1016/j.eurpolymj.2015.12.017

Webster DC, Crain AL (2000) Synthesis and applications of cyclic carbonate functional polymers in thermosetting coatings. ProgOrg Coat 40:275–282. https://doi.org/10.1016/S0300-9440(00)00114-4

Besse V, Camara F, Voirin C, Auvergne R, Caillol S, Boutevin B (2013) Synthesis and applications of unsaturated cyclocarbonates. Polymer Chemistry 4:4545–4561. https://doi.org/10.1039/C3PY00343D

Liang S, Liu H, Jiang T, Song J, Yang G, Han B (2011) Highly efficient synthesis of cyclic carbonates from CO2 and epoxides over cellulose/KI. Chem Commun 47:2131–2133. https://doi.org/10.1039/C0CC04829A

Wang J-Q, Sun J, Shi C-Y, Cheng W-G, Zhang X-P, Zhang S-J (2011) Synthesis of dimethyl carbonate from CO2 and ethylene oxide catalyzed by K2CO3-based binary salts in the presence of H2O. Green Chem 13:3213–3217. https://doi.org/10.1039/C1GC15812K

Wang J-Q, Kong D-L, Chen J-Y, Cai F, He L-N (2006) Synthesis of cyclic carbonates from epoxides and carbon dioxide over silica-supported quaternary ammonium salts under supercritical conditions. J Mol Catal A: Chem 249:143–148. https://doi.org/10.1016/j.molcata.2006.01.008

Buchard A, Kember MR, Sandeman KG, Williams CK (2011) A bimetallic iron(iii) catalyst for CO2/epoxide coupling. Chem Commun 47:212–214. https://doi.org/10.1039/C0CC02205E

Foltran S, Alsarraf J, Robert F, Landais Y, Cloutet E, Cramail H, Tassaing T (2013) On the chemical fixation of supercritical carbon dioxide with epoxides catalyzed by ionic salts: an in situ FTIR and Raman study. Catal Sci Technol 3:1046–1055. https://doi.org/10.1039/C2CY20784B

KMK Y, Curcic I, Gabriel J, Morganstewart H, Tsang SC (2010) Catalytic coupling of CO2 with epoxide over supported and unsupported amines. J Phys Chem A 114:3863–3872. https://doi.org/10.1021/jp906365g

Qi C, Ye J, Zeng W, Jiang H (2010) Polystyrene-supported amino acids as efficient catalyst for chemical fixation of carbon dioxide. Adv Synth Catal 352:1925–1933. https://doi.org/10.1002/adsc.201000261

Unverferth M, Kreye O, Prohammer A, MAR M (2013) Renewable non-isocyanate based thermoplastic polyurethanes via polycondensation of dimethyl carbamate monomers with diols. Macromol Rapid Commun 34:1569–1574. https://doi.org/10.1002/marc.201300503

Mahendran AR, Aust N, Wuzella G, Müller U, Kandelbauer A (2012) Bio-based non-isocyanate urethane derived from plant oil. J Polym Environ 20:926–931. https://doi.org/10.1007/s10924-012-0491-9

Javni I, Hong DP, Petrović ZS (2008) Soy-based polyurethanes by nonisocyanate route. J Appl Polym Sci 108:3867–3875. https://doi.org/10.1002/app.27995

Çaylı G, Küsefoğlu S (2008) Biobased polyisocyanates from plant oil triglycerides: Synthesis, polymerization, and characterization. J Appl Polym Sci 109:2948–2955. https://doi.org/10.1002/app.28401

Tamami B, Sohn S, Wilkes GL (2004) Incorporation of carbon dioxide into soybean oil and subsequent preparation and studies of nonisocyanate polyurethane networks. J Appl Polym Sci 92:883–891. https://doi.org/10.1002/app.20049

Wilkes G, Sohn S and Tamami B (2004) Nonisocyanate polyurethane materials, and their preparation from epoxidized soybean oils and related epoxidized vegetable oils, incorporation of carbon dioxide into soybean oil, and carbonation of vegetable oils. US7045577 B2,

Li Z, Zhao Y, Yan S, Wang X, Kang M, Wang J, Xiang H (2008) Catalytic synthesis of carbonated soybean oil. Catal Lett 123:246–251. https://doi.org/10.1007/s10562-008-9414-8

Pawlik H, Prociak A (2012) Influence of palm oil-based polyol on the properties of flexible polyurethane foams. J Polym Environ 20:438–445. https://doi.org/10.1007/s10924-011-0393-2

Dworakowska S, Bogdal D, Prociak A (2012) Microwave-assisted synthesis of polyols from rapeseed oil and properties of flexible polyurethane foams. Polymers 4:1462

Ruijun G, Samir K, Mohini S (2012) Preparation and characterization of sustainable polyurethane foams from soybean oils. J Am Oil Chem Soc 89:2103–2111. https://doi.org/10.1007/s11746-012-2109-8

Elżbieta M, Szymon B, Aleksander P (2015) Effect of different concentration of rapeseed-oil-based polyol and water on structure and mechanical properties of flexible polyurethane foams. J Appl Polym Sci 132. https://doi.org/10.1002/app.42372

Marcovich NE, Kurańska M, Prociak A, Malewska E, Kulpa K (2017) Open cell semi-rigid polyurethane foams synthesized using palm oil-based bio-polyol. Ind Crop Prod 102:88–96. https://doi.org/10.1016/j.indcrop.2017.03.025

Zhang L, Jeon HK, Malsam J, Herrington R, Macosko CW (2007) Substituting soybean oil-based polyol into polyurethane flexible foams. Polymer 48:6656–6667. https://doi.org/10.1016/j.polymer.2007.09.016

Adnan S, Tuan Ismail TNM, Mohd Noor N, Nek Mat Din NSM, Hanzah NA, Shoot Kian Y, Abu Hassan H (2016, 2016) Development of flexible polyurethane nanostructured biocomposite foams derived from palm olein-based polyol. Adv Mater Sci Eng:12. https://doi.org/10.1155/2016/4316424

Sudipto D, Mahendra D, WG L (2009) Characterization of flexible polyurethane foams based on soybean-based polyols. J Appl Polym Sci 112:299–308. https://doi.org/10.1002/app.29402

Prociak A, Rojek P, Pawlik H (2012) Flexible polyurethane foams modified with natural oil based polyols. J Cellular Plast 48:489–499. https://doi.org/10.1177/0021955x12446210

BL M, WR P (2007) Thermosetting foam with a high bio-based content from acrylated epoxidized soybean oil and carbon dioxide. J Appl Polym Sci 105:1042–1052. https://doi.org/10.1002/app.26182

Zhang C, Kessler MR (2015) Bio-based polyurethane foam made from compatible blends of vegetable-oil-based polyol and petroleum-based polyol. ACS Sustain Chem Eng 3:743–749. https://doi.org/10.1021/acssuschemeng.5b00049

Nik Pauzi NNP, Majid AR, Dzulkifli MH, Yahya MY (2014) Development of rigid bio-based polyurethane foam reinforced with nanoclay. Compos Part B: Eng 67:521–526. https://doi.org/10.1016/j.compositesb.2014.08.004

Prociak A, Malewska E, Kurańska M, Bąk S, Budny P (2018) Flexible polyurethane foams synthesized with palm oil-based bio-polyols obtained with the use of different oxirane ring opener. Ind Crop Prod 115:69–77. https://doi.org/10.1016/j.indcrop.2018.02.008

Liang H, Liu L, Lu J, Chen M, Zhang C (2018) Castor oil-based cationic waterborne polyurethane dispersions: Storage stability, thermo-physical properties and antibacterial properties. Ind Crop Prod 117:169–178. https://doi.org/10.1016/j.indcrop.2018.02.084

Ying X, Zongyu Z, KM R, Byron BS, LR C (2012) Antibacterial soybean-oil-based cationic polyurethane coatings prepared from different amino polyols. ChemSusChem 5:2221–2227. https://doi.org/10.1002/cssc.201200352

Liang H, Wang S, He H, Wang M, Liu L, Lu J, Zhang Y, Zhang C (2018) Aqueous anionic polyurethane dispersions from castor oil. Ind Crop Prod 122:182–189. https://doi.org/10.1016/j.indcrop.2018.05.079

Mispreuve HLSA, Tribelhorn U and Waddington S (1996) Polyurethane foam for packaging applications. US5484820 A,

Guan J, Fujimoto KL, Sacks MS, Wagner WR (2005) Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials 26:3961–3971. https://doi.org/10.1016/j.biomaterials.2004.10.018

Fujimoto K, Minato M, Miyamoto S, Kaneko T, Kikuchi H, Sakai K, Okada M, Ikada Y (1993) Porous polyurethane tubes as vascular graft. J Appl Biomater 4:347–354. https://doi.org/10.1002/jab.770040409

Santerre JP, Woodhouse K, Laroche G, Labow RS (2005) Understanding the biodegradation of polyurethanes: From classical implants to tissue engineering materials. Biomaterials 26:7457–7470. https://doi.org/10.1016/j.biomaterials.2005.05.079

Chiu H-T, Chang C-Y, Pan H-W, Chiang T-Y, Kuo M-T, Wang Y-H (2012) Characterization of polyurethane foam as heat seal coating in medical pouch packaging application. J Polym Res 19:1–12. https://doi.org/10.1007/s10965-011-9791-3

Fornasieri M, Alves JW, Muniz EC, Ruvolo-Filho A, Otaguro H, Rubira AF, Carvalho GM (2011) Synthesis and characterization of polyurethane composites of wood waste and polyols from chemically recycled pet. Compos Part A: Appl Sci Manuf 42:189–195. https://doi.org/10.1016/j.compositesa.2010.11.004

Ashori A, Nourbakhsh A (2009) Characteristics of wood–fiber plastic composites made of recycled materials. Waste Manag 29:1291–1295. https://doi.org/10.1016/j.wasman.2008.09.012

Gao Z, Wu D, Su W, Ding X (2009) Polyurethane-solid wood composites prepared with various catalysts. I. Mechanical properties and dimensional stabilities. J Appl Polym Sci 111:1293–1299. https://doi.org/10.1002/app.29152

Carter DG, Green DJ and Collins MC (1991) Use of reactive hot melt adhesive for packaging applications. US5018337 A,

Schuler NL, Jenks JD, Lasecki MP and Donley H (2001) Polyurethane/polyurea elastomer coated steel battery box for hybrid electric vehicle applications. CA 2264412,

Gurunathan T, CRK R, Narayan R, KVSN R (2013) Polyurethane conductive blends and composites: synthesis and applications perspective. J Mater Sci 48:67–80. https://doi.org/10.1007/s10853-012-6658-x