Các vật liệu bionanocomposite tương thích sinh học dựa trên polyurethane có bạc cho các ứng dụng y sinh

Springer Science and Business Media LLC - Tập 16 - Trang 1-17 - 2014
D. Filip1, D. Macocinschi1, E. Paslaru1, B. S. Munteanu2, R. P. Dumitriu1, M. Lungu3, C. Vasile1
1“Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
2Faculty of Physics, “Al. I. Cuza” University, Iasi, Romania
3National Institute for Biological Sciences, Bucharest, Romania

Tóm tắt

Các màng bionanocomposite dựa trên polyurethane (PU), ma trận ngoại bào (EM), và các hạt nano bạc (AgNPs) đã được chế tạo bằng cách áp dụng cả phương pháp đúc dung môi và phương pháp điện spinning/điện phun. Các thành phần PU–EM–Ag đã được điện spinning/điện phun lên màng PU để hiện thực hóa các vật liệu sinh học tương thích được cải thiện. Các đặc tính hình thái bề mặt và tính ướt đã được điều tra bằng các kỹ thuật SEM và AFM cũng như đo góc tiếp xúc với nước. Góc tiếp xúc với nước phụ thuộc vào hóa học bề mặt và hai phương pháp được sử dụng để chế tạo màng sinh học cũng như độ nhám của bề mặt màng. Nghiên cứu lưu biến học cung cấp thông tin về khả năng điện spinning của các dung dịch/phân tán polymer. Các hạt nano bạc ảnh hưởng lớn đến khả năng điện spinning của các phân tán polymer do sự gia tăng độ nhớt động học khi hàm lượng bạc tăng lên. PU nguyên chất và PU được bổ sung với hàm lượng AgNPs thấp hơn 0.3% cho thấy sự phát triển tế bào cao và tính tương thích sinh học tốt. Các màng nanobionanocomposite PU–EM–Ag điện spinning mang lại lợi thế khi sử dụng lượng nhỏ các thành phần sinh học hoạt động và diệt khuẩn. Các màng nanobionanocomposite bạc thu được có độ sinh học tốt và không độc hại cần thiết cho các ứng dụng thiết bị y sinh. Các màng nanobionanocomposite thu được được dự đoán sẽ được ứng dụng cho các thiết bị y tế như catheter tiểu tiện, băng vết thương, v.v.

Từ khóa

#bionanocomposite #polyurethane #hạt nano bạc #tính tương thích sinh học #ứng dụng y sinh

Tài liệu tham khảo

Adams T, Grant C, Watson H (2012) A simple algorithm to relate measured surface roughness to equivalent sand-grain roughness. Int J Mech Eng Mechatron (IJMEM) 1:66–71. doi:10.11159/ijmem.2012.008 Agostino AD, La Gatta A, Busico T, De Rosa M, Schiraldi C (2012) Semi-interpenetrated hydrogels composed of pva and hyaluronan or chondroitin sulphate: chemico-physical and biological characterization. J Biotechnol Biomater 2:140 Akhgari A, Heshmati Z, Makhmalzadeh BS (2013) Indomethacin electrospun nanofibers for colonic drug delivery: preparation and characterization. Adv Pharm Bull 3:85–90 Alarcon EL, Bueno-Alejo CJ, Noel CW, Stamplecoskie KG, Pacioni NL, Poblete H, Scaiano JC (2013) Human serum albumin as protecting agent of silver nanoparticles: role of the protein conformation and amine groups in the nanoparticle stabilization. J Nanopart Res 15:1374–1387 Al-Thabaiti SA, Al-Nowaiser FM, Obaid AY, Al-Youbi AO, Khan Z (2008) Formation and characterization of surfactant stabilized silver nanoparticles: A kinetic study. Colloid Surf B 67:230–237 Anwar RA (1990) Elastin: a brief review. Biochem Educ 18:162–166 Brassard J-D, Sarkar DK, Perron J (2011) Synthesis of monodisperse fluorinated silica nanoparticles and their superhydrophobic thin films. ACS Appl Mater Inter 3:3583–3588. doi:10.1021/am2007917 Burrell RE (2003) A scientific perspective on the use of topical silver preparations. Ostomy Wound Manag 49:19–24 Campo GM, Avenoso A, Campo S, Ferlazzo AM, Calatroni A (2006) Antioxidant activity of chondroitin sulfate. Adv Pharmacol 53:417–431 Cengiz F, Jirsak O (2009) The effect of salt on the roller electrospinning of polyurethane nanofibers. Fiber Polym 10:177–184 Craciunescu O, Moldovan L, Buzgariu W, Zarnescu O, Bojin D, Radu GL (2004) Preparation of an Elastin–Collagen artificial matrix. Evaluation of its structure and biocompatibility. Roum Biotechnol Lett 9:1785–1792 Craciunescu O, Gaspar A, Trif M, Moisei M, Oancea A, Moldovan L, Zarnescu O (2014) Preparation and characterization of a collagen-liposome-chondroitin sulfate matrix with potential application for inflammatory disorders treatment. J Nanomater ID 903691 Crespo J, Garcia-Barrasa J, Lopez-de-Luzuriaga JM, Monge M, Olmos ME, Saenz Y, Torres C (2012) Organometallic approach to polymer-protected antibacterial silver nanoparticles: optimal nanoparticle size-selection for bacteria interaction. J Nanopart Res 14:1281–1293 Donlan RM (2001) Biofilms and device-associated infections. Emerg Infect Dis 7:277–281 Fang J, Wang H, Niu H, Lin T, Wang X (2010) Evolution of fiber morphology during electrospinning. J Appl Polym Sci 118:2553–2561 Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668 Filip D, Macocinschi D (2002) Thermogravimetric analysis of polyurethane-polysulfone blends. Polym Int 51:699–706 Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ (2004) Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection. J Antimicrob Chemother 54:1019–1024 Gibson Ph, Schreuder-Gibson H, Rivin D (2001) Transport properties of porous membranes based on electrospun nanofibers. Colloid Surf A 187–188:469–481 Gittard SD, Hojo D, Hyde GK, Scarel G, Narayan RJ, Parsons GN (2010) Antifungal textiles formed using silver deposition in supercritical carbon dioxide. J Mater Eng Perform 19:368–373 Gray JE, Norton PR, Alnouno R, Marolda CL, Valvano MA, Griffiths K (2003) Biological efficacy of electroless deposited silver on plasma activated polyurethane. Biomaterials 24:2759–2765 Hanisch M, Mackovic M, Taccardi N, Spiecker E, Taylor RNK (2012) Synthesis of silver nanoparticle necklaces without explicit addition of reducing or templating agents. Chem Commun 48:4287–4289 Joshi RR, Underwood T, Frautschi JR, Phillips RE Jr, Schoen FJ, Levy RJ (1996) Calcification of polyurethanes implanted subdermally in rats is enhanced by calciphylaxis. J Biomed Mater Res 31:201–207 Joyce-Wohrmann RM, Munstedt H (1999) Determination of the silver ion release from polyurethanes enriched with silver. Infection 27:46–48 Kaali P, Stromberg E, Aune RE, Czel G, Momcilovic D, Karlsson S (2010) Antimicrobial properties of Ag+ loaded zeolite polyester polyurethane and silicone rubber and long-term properties after exposure to in vitro ageing. Polym Degrad Stab 95:1456–1465 Khan Z, Al-Thabaiti SA, El-Mossalamy EH, Obaid AY (2009) Studies on the kinetics of growth of silver nanoparticles in different surfactant solutions. Colloid Surf B 73:284–288 Kim JH, Min BR, Won J, Kang YS (2006) Effect of the polymer matrix on the formation of silver nanoparticles in polymer-silver salt complex membranes. J Polym Sci Polym Phys 44:1168–1178 Kim S-C, Kim J-W, Yoon G-J, Nam S-W, Lee S-Y (2013) Antifungal effects of 3D scaffold type gelatin/Ag nanoparticles biocomposite prepared by solution plasma processing. Curr Appl Phys 13:S48–S53 Kumar A, Vemula PK, Ajayan PM, John G (2008) Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater 7:236–241 Macocinschi D, Filip D, Vlad S (2008) New polyurethane materials from renewable resources: synthesis and characterization. e-Polymers 062:1–12 Macocinschi D, Filip D, Butnaru M, Dimitriu CD (2009a) Surface characterization of biopolyurethanes based on cellulose derivatives. J Mater Sci Mater Med 20:775–783 Macocinschi D, Filip D, Vlad S, Cristea M, Butnaru M (2009b) Segmented biopolyurethanes for medical applications. J Mater Sci Mater Med 20:1659–1668 Macocinschi D, Filip D, Vlad S, Butnaru M, Knieling L (2013) Evaluation of polyurethane based on cellulose derivative-ketoprofen biosystem for implant biomedical devices. Int J Biol Macromol 52:32–37 Macocinschi D, Filip D, Paslaru E, Munteanu BS, Dumitriu RP, Pricope GM, Aflori M, Dobromir M, Nica V, Vasile C (2014) J Bioact Compat Polym in press Mazyala EJ (2008) Dermal fibroblast: a histological and tissue culture study. MSc thesis, Faculty of Health Sciences, University of Stellenbosch Moldovan L, Craciunescu O, Zarnescu O, Macocinschi D, Bojin D (2008) Preparation and characterization of new biocompatibilized polymeric materials for medical use. J Optoelectron Adv Mater 10:942–947 Monzillo V, Corona S, Lanzarini P, Valle CD, Marone P (2012) Chlorhexidine-silver sulfadiazine impregnated central venous catheters: in vitro antibacterial activity and impact on bacterial adhesion. New Microbiol 35:175–182 Munteanu BS, Pâslaru E, Fras Zemljic L, Sdrobiş A, Pricope GM, Vasile C (2014) Chitosan coatings applied to polyethylene surface to obtain food-packaging materials. Cell Chem Technol accepted Necas J, Bartosikova L, Brauner P, Kolar J (2008) Hyaluronic acid (hyaluronan): a review. Vet Med-Czech 53:397–411 Paladini F, Pollini M, Tala A, Alifano P, Sannino A (2012) Efficacy of silver treated catheters for haemodialysis in preventing bacterial adhesion. J Mater Sci Mater Med 23:1983–1990 Pastoriza-Santos I, Liz-Marzan LM (2000) Reduction of silver nanoparticles in DMF. Formation of monolayers and stable colloids. Pure Appl Chem 72:83–90 Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12:1197–1212 Qin X-H, Wang S-Y (2006) Filtration properties of electrospinning nanofibers. J Appl Polym Sci 102:1285–1290 Raschip IE, Vasile C, Macocinschi D (2009) Compatibility and biocompatibility study of new HPC/PU blends. Polym Int 58:4–16 Ronca F, Palmieri L, Panicucci P, Ronca G (1998) Anti-inflammatory activity of chondroitin sulfate. Osteoarthr Cartilage 6:14–21 Silva GA, Marques AP, Gomes ME, Coutinho OP, Reis RL (2005) Biodegradable systems in tissue engineering and regenerative medicine. CRC Press, Boca Raton Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C, Mulfinger L (2007) Synthesis and study of silver nanoparticles. J Chem Educ 84:322–325 Won H II, Nersisyan H, Won CW, Lee J-M, Hwang J-S (2010) Preparation of porous silver particles using ammonium formate and its formation mechanism. Chem Eng J 156:459–464 Yakutik IM, Shevchenko GP (2004) Self-organization of silver nanoparticles forming on chemical reduction to give monodisperse spheres. Surf Sci 566:414–418 Yang S-H, Lee Y-SJ, Lin F-H, Yang J-M, Chen K (2007) Chitosan/poly(vinyl alcohol) blending hydrogel coating improves the surface characteristics of segmented polyurethane urethral catheters. J Biomed Mater Res B 83B:304–313 Yu JH, Fridrikh SV, Rutledge GC (2006) The role of elasticity in the formation of electrospun fibers. Polymer 47:4789–4797 Zook JM, Halter MD, Cleveland D, Long SE (2012) Disentangling the effects of polymer coatings on silver nanoparticle agglomeration, dissolution, and toxicity to determine mechanisms of nanotoxicity. J Nanopart Res 14:1165–1173