Polyurethane Networks Modified with Octa(propylglycidyl ether) Polyhedral Oligomeric Silsesquioxane

Macromolecular Chemistry and Physics - Tập 207 Số 20 - Trang 1842-1851 - 2006
Yonghong Liu1, Yong Ni1, Sixun Zheng2
1Department of Polymer Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
2Department of Polymer Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China. Fax: +86 21 5474 1297

Tóm tắt

AbstractSummary: OpePOSS was incorporated into polyurethane to make organic‐inorganic hybrid composites and nano‐composites containing up to 20 wt.‐% POSS were prepared. The formation of the hybrid polyurethane networks is ascribed to two principal cross‐linking reactions: i) the cross‐linking reaction between MOCA and the polyurethane prepolymer and ii) the inter‐component reaction between the PU networks and OpePOSS. The latter was confirmed by model compound reactions. TEM indicates that the POSS was homogeneously dispersed in the polymer matrix at the nanometer scale. DSC showed that the nanocomposites displayed increased glass transition temperatures compared to the control polyurethane. In terms of TGA, the nanocomposites displayed improved thermal stability. Tensile tests indicate that the organic‐inorganic hybrid networks were significantly reinforced with the inclusion of POSS. Contact angle measurements show that the organic‐inorganic nanocomposites displayed a significant enhancement in surface hydrophobicity as well as a reduction in the surface free energy. The improvement in surface properties was ascribed to the presence of the POSS moiety in place of the polar component of polyurethane. XPS shows enrichment with Si‐containing moieties on the surfaces.Organic‐Inorganic Hybrid PU Networks.magnified imageOrganic‐Inorganic Hybrid PU Networks.

Từ khóa


Tài liệu tham khảo

10.1126/science.1962191

10.1016/S0022-328X(96)06821-0

10.1021/cr00037a013

10.1021/cr00037a012

10.1007/3-540-69711-X_3

10.1002/(SICI)1099-0739(199810/11)12:10/11<707::AID-AOC776>3.0.CO;2-1

10.1021/cm00059a023

Andrews M. P., 1997, Crit. Rev. Opt. Sci. Technol., 68, 253

10.1016/0022-3093(85)90389-8

10.1021/cm00059a007

10.1021/cm0100671

10.1021/cm00059a023

10.1007/BF03222789

10.1021/bk-1995-0585.ch006

10.1002/pola.1993.080311009

10.1007/3-540-69711-X_3

10.1023/A:1015287910502

10.1016/j.progpolymsci.2003.08.003

10.1039/a901308c

10.1039/a807302c

10.1021/ma00060a053

10.1021/ma00128a067

10.1007/BF01057895

10.1021/cm950536x

10.1021/ma960609d

10.1002/(SICI)1097-4628(19960425)60:4<591::AID-APP12>3.0.CO;2-2

10.1002/(SICI)1099-0488(199808)36:11<1857::AID-POLB7>3.0.CO;2-N

10.1016/0022-328X(96)06364-4

10.1080/02603599508035785

10.1016/S0032-3861(00)00389-X

10.1002/(SICI)1097-0126(200005)49:5<437::AID-PI239>3.0.CO;2-1

10.1002/fam.792

10.1021/ja0275921

10.1002/marc.200400465

10.1021/ma047304g

10.1002/marc.200500274

10.1021/ma0476543

10.1002/marc.200500062

10.1002/pola.21231

10.1021/ma030172r

10.1021/ma9800764

10.1021/ma981210n

10.1016/S0032-3861(00)00072-0

Lee A., 2000, Polym. Mater. Sci. Eng., 82, 235

10.1021/ja010720l

10.1021/ma030309d

10.1016/S0169-1317(99)00009-5

10.1016/j.progpolymsci.2003.08.002

10.1080/0021846708544579

Kaelble D. H., 1971, Physical Chemistry of Adhesion

10.1021/ma047636l

10.1021/ma961442r