Polyunsaturated fatty acid metabolism in prostate cancer

Cancer and Metastasis Reviews - Tập 30 - Trang 295-309 - 2011
Isabelle M. Berquin1,2, Iris J. Edwards3,2, Steven J. Kridel1,2, Yong Q. Chen1,2
1Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, USA
2Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, USA
3Department of Pathology, Wake Forest School of Medicine, Winston-Salem, USA

Tóm tắt

Polyunsaturated fatty acids (PUFA) play important roles in the normal physiology and in pathological states including inflammation and cancer. While much is known about the biosynthesis and biological activities of eicosanoids derived from ω6 PUFA, our understanding of the corresponding ω3 series lipid mediators is still rudimentary. The purpose of this review is not to offer a comprehensive summary of the literature on fatty acids in prostate cancer but rather to highlight some of the areas where key questions remain to be addressed. These include substrate preference and polymorphic variants of enzymes involved in the metabolism of PUFA, the relationship between de novo lipid synthesis and dietary lipid metabolism pathways, the contribution of cyclooxygenases and lipoxygenases as well as terminal synthases and prostanoid receptors in prostate cancer, and the potential role of PUFA in angiogenesis and cell surface receptor signaling.

Tài liệu tham khảo

Calviello, G., Serini, S., & Piccioni, E. (2007). n-3 polyunsaturated fatty acids and the prevention of colorectal cancer: molecular mechanisms involved. Current Medicinal Chemistry, 14(29), 3059–3069. Sun, H., Berquin, I. M., Owens, R. T., O’Flaherty, J. T., & Edwards, I. J. (2008). Peroxisome proliferator-activated receptor gamma-mediated up-regulation of syndecan-1 by n-3 fatty acids promotes apoptosis of human breast cancer cells. Cancer Research, 68(8), 2912–2919. Berquin, I. M., Min, Y., Wu, R., et al. (2007). Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids. The Journal of Clinical Investigation, 117(7), 1866–1875. Berquin, I. M., Edwards, I. J., & Chen, Y. Q. (2008). Multi-targeted therapy of cancer by omega-3 fatty acids. Cancer Letters, 269(2), 363–377. Chen, Y. Q., Edwards, I. J., Kridel, S. J., Thornburg, T., & Berquin, I. M. (2007). Dietary fat–gene interactions in cancer. Cancer Metastasis Reviews, 26(3–4), 535–551. Simopoulos, A. P. (2010). Genetic variants in the metabolism of omega-6 and omega-3 fatty acids: their role in the determination of nutritional requirements and chronic disease risk. Experimental Biology and Medicine, 235(7), 785–795. Bernert, J. T., Jr., & Sprecher, H. (1975). Studies to determine the role rates of chain elongation and desaturation play in regulating the unsaturated fatty acid composition of rat liver lipids. Biochimica et Biophysica Acta, 398(3), 354–363. Burdge, G. C., & Calder, P. C. (2005). Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reproduction Nutrition Development, 45(5), 581–597. Williams, C. M., & Burdge, G. (2006). Long-chain n-3 PUFA: plant v. marine sources. Proceedings of the Nutrition Society, 65(1), 42–50. Pawlosky, R. J., Hibbeln, J. R., Novotny, J. A., & Salem, N., Jr. (2001). Physiological compartmental analysis of alpha-linolenic acid metabolism in adult humans. Journal of Lipid Research, 42(8), 1257–1265. Portolesi, R., Powell, B. C., & Gibson, R. A. (2007). Competition between 24:5n-3 and ALA for Delta 6 desaturase may limit the accumulation of DHA in HepG2 cell membranes. Journal of Lipid Research, 48(7), 1592–1598. Childs, C. E., Romeu-Nadal, M., Burdge, G. C., & Calder, P. C. (2008). Gender differences in the n-3 fatty acid content of tissues. Proceedings of the Nutrition Society, 67(1), 19–27. Kitson, A. P., Stroud, C. K., & Stark, K. D. (2010). Elevated production of docosahexaenoic acid in females: potential molecular mechanisms. Lipids, 45(3), 209–224. Bar, M., Wyman, S. K., Fritz, B. R., et al. (2008). MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries. Stem Cells, 26(10), 2496–2505. Nygaard, S., Jacobsen, A., Lindow, M., et al. (2009). Identification and analysis of miRNAs in human breast cancer and teratoma samples using deep sequencing. BMC Medical Genomics, 2, 35. Creighton, C. J., Benham, A. L., Zhu, H., et al. (2010). Discovery of novel microRNAs in female reproductive tract using next generation sequencing. PLoS One, 5(3), e9637. Schaeffer, L., Gohlke, H., Muller, M., et al. (2006). Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Human Molecular Genetics, 15(11), 1745–1756. Xie, L., & Innis, S. M. (2008). Genetic variants of the FADS1 FADS2 gene cluster are associated with altered (n-6) and (n-3) essential fatty acids in plasma and erythrocyte phospholipids in women during pregnancy and in breast milk during lactation. Journal of Nutrition, 138(11), 2222–2228. Martinelli, N., Girelli, D., Malerba, G., et al. (2008). FADS genotypes and desaturase activity estimated by the ratio of arachidonic acid to linoleic acid are associated with inflammation and coronary artery disease. American Journal of Clinical Nutrition, 88(4), 941–949. Malerba, G., Schaeffer, L., Xumerle, L., et al. (2008). SNPs of the FADS gene cluster are associated with polyunsaturated fatty acids in a cohort of patients with cardiovascular disease. Lipids, 43(4), 289–299. Rzehak, P., Heinrich, J., Klopp, N., et al. (2009). Evidence for an association between genetic variants of the fatty acid desaturase 1 fatty acid desaturase 2 (FADS1 FADS2) gene cluster and the fatty acid composition of erythrocyte membranes. British Journal of Nutrition, 101(1), 20–26. Bokor, S., Dumont, J., Spinneker, A., et al. (2010). Single nucleotide polymorphisms in the FADS gene cluster are associated with delta-5 and delta-6 desaturase activities estimated by serum fatty acid ratios. Journal of Lipid Research, 51(8), 2325–2333. Lu, Y., Feskens, E. J., Dolle, M. E., et al. (2010). Dietary n-3 and n-6 polyunsaturated fatty acid intake interacts with FADS1 genetic variation to affect total and HDL-cholesterol concentrations in the Doetinchem Cohort Study. American Journal of Clinical Nutrition, 92(1), 258–265. Mathias, R. A., Vergara, C., Gao, L., et al. (2010). FADS genetic variants and omega-6 polyunsaturated fatty acid metabolism in a homogeneous island population. Journal of Lipid Research, 51(9), 2766–2774. Molto-Puigmarti, C., Plat, J., Mensink, R. P., et al. (2010). FADS1 FADS2 gene variants modify the association between fish intake and the docosahexaenoic acid proportions in human milk. American Journal of Clinical Nutrition, 91(5), 1368–1376. Zietemann, V., Kroger, J., Enzenbach, C., et al. (2010). Genetic variation of the FADS1 FADS2 gene cluster and n-6 PUFA composition in erythrocyte membranes in the European Prospective Investigation into Cancer and Nutrition-Potsdam study. British Journal of Nutrition, 104(12), 1748–1759. Koletzko, B., Lattka, E., Zeilinger, S., Illig, T., & Steer, C. (2011). Genetic variants of the fatty acid desaturase gene cluster predict amounts of red blood cell docosahexaenoic and other polyunsaturated fatty acids in pregnant women: findings from the Avon Longitudinal Study of Parents and Children. American Journal of Clinical Nutrition, 93(1), 211–219. Kwak, J. H., Paik, J. K., Kim, O. Y., et al. (2011). FADS gene polymorphisms in Koreans: association with omega6 polyunsaturated fatty acids in serum phospholipids, lipid peroxides, and coronary artery disease. Atherosclerosis, 214(1), 94–100. Tanaka, T., Shen, J., Abecasis, G. R., et al. (2009). Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI Study. PLoS Genetics, 5(1), e1000338. Lattka, E., Illig, T., Heinrich, J., & Koletzko, B. (2009). FADS gene cluster polymorphisms: important modulators of fatty acid levels and their impact on atopic diseases. Journal of Nutrigenetics and Nutrigenomics, 2(3), 119–128. Lattka, E., Illig, T., Heinrich, J., & Koletzko, B. (2010). Do FADS genotypes enhance our knowledge about fatty acid related phenotypes? Clinical Nutrition, 29(3), 277–287. Martinelli, N., Consoli, L., & Olivieri, O. (2009). A ‘desaturase hypothesis’ for atherosclerosis: Janus-faced enzymes in omega-6 and omega-3 polyunsaturated fatty acid metabolism. Journal of Nutrigenetics and Nutrigenomics, 2(3), 129–139. Lattka, E., Illig, T., Koletzko, B., & Heinrich, J. (2010). Genetic variants of the FADS1 FADS2 gene cluster as related to essential fatty acid metabolism. Current Opinion in Lipidology, 21(1), 64–69. Merino, D. M., Ma, D. W., & Mutch, D. M. (2010). Genetic variation in lipid desaturases and its impact on the development of human disease. Lipids in Health and Disease, 9, 63. Merino, D. M., Johnston, H., Clarke, S., et al. (2011). Polymorphisms in FADS1 and FADS2 alter desaturase activity in young Caucasian and Asian adults. Molecular Genetics and Metabolism, 103(2), 171–178. Kuhajda, F. P. (2006). Fatty acid synthase and cancer: new application of an old pathway. Cancer Research, 66(12), 5977–5980. Menendez, J. A., & Lupu, R. (2007). Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nature Reviews. Cancer, 7(10), 763–777. Bandyopadhyay, S., Pai, S. K., Watabe, M., et al. (2005). FAS expression inversely correlates with PTEN level in prostate cancer and a PI 3-kinase inhibitor synergizes with FAS siRNA to induce apoptosis. Oncogene, 24(34), 5389–5395. Milgraum, L. Z., Witters, L. A., Pasternack, G. R., & Kuhajda, F. P. (1997). Enzymes of the fatty acid synthesis pathway are highly expressed in in situ breast carcinoma. Clinical Cancer Research, 3(11), 2115–2120. Pflug, B. R., Pecher, S. M., Brink, A. W., Nelson, J. B., & Foster, B. A. (2003). Increased fatty acid synthase expression and activity during progression of prostate cancer in the TRAMP model. Prostate, 57(3), 245–254. Rossi, S., Graner, E., Febbo, P., et al. (2003). Fatty acid synthase expression defines distinct molecular signatures in prostate cancer. Molecular Cancer Research, 1(10), 707–715. Shah, U. S., Dhir, R., Gollin, S. M., et al. (2006). Fatty acid synthase gene overexpression and copy number gain in prostate adenocarcinoma. Human Pathology, 37(4), 401–409. Kridel, S. J., Lowther, W. T., & Pemble, C. Wt. (2007). Fatty acid synthase inhibitors: new directions for oncology. Expert Opin Investig Drugs, 16(11), 1817–1829. Swinnen, J. V., Esquenet, M., Goossens, K., Heyns, W., & Verhoeven, G. (1997). Androgens stimulate fatty acid synthase in the human prostate cancer cell line LNCaP. Cancer Research, 57(6), 1086–1090. Swinnen, J. V., Ulrix, W., Heyns, W., & Verhoeven, G. (1997). Coordinate regulation of lipogenic gene expression by androgens: evidence for a cascade mechanism involving sterol regulatory element binding proteins. Proceedings of the National Academy of Sciences of the United States of America, 94(24), 12975–12980. Swinnen, J. V., & Verhoeven, G. (1998). Androgens and the control of lipid metabolism in human prostate cancer cells. The Journal of Steroid Biochemistry and Molecular Biology, 65(1–6), 191–198. Swinnen, J. V., Roskams, T., Joniau, S., et al. (2002). Overexpression of fatty acid synthase is an early and common event in the development of prostate cancer. International Journal of Cancer, 98(1), 19–22. Van de Sande, T., De Schrijver, E., Heyns, W., Verhoeven, G., & Swinnen, J. V. (2002). Role of the phosphatidylinositol 3′-kinase/PTEN/Akt kinase pathway in the overexpression of fatty acid synthase in LNCaP prostate cancer cells. Cancer Research, 62(3), 642–646. Migita, T., Ruiz, S., Fornari, A., et al. (2009). Fatty acid synthase: a metabolic enzyme and candidate oncogene in prostate cancer. Journal of the National Cancer Institute, 101(7), 519–532. Bauer, D. E., Hatzivassiliou, G., Zhao, F., Andreadis, C., & Thompson, C. B. (2005). ATP citrate lyase is an important component of cell growth and transformation. Oncogene, 24(41), 6314–6322. Hatzivassiliou, G., Zhao, F., Bauer, D. E., et al. (2005). ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell, 8(4), 311–321. DeBerardinis, R. J., Mancuso, A., Daikhin, E., et al. (2007). Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proceedings of the National Academy of Sciences, 104(49), 19345–19350. Abu-Elheiga, L., Matzuk, M. M., Kordari, P., et al. (2005). Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal. PNAS, 102(34), 12011–12016. Mao, J., DeMayo, F. J., Li, H., et al. (2006). Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 103(22), 8552–8557. Chirala, S. S., Chang, H., Matzuk, M., et al. (2003). Fatty acid synthesis is essential in embryonic development: fatty acid synthase null mutants and most of the heterozygotes die in utero. Proceedings of the National Academy of Sciences of the United States of America, 100(11), 6358–6363. Wakil, S. J. (1989). Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry, 28(11), 4523–4530. Wakil, S. J., Stoops, J. K., & Joshi, V. C. (1983). Fatty acid synthesis and its regulation. Annual Review of Biochemistry, 52(1), 537–579. Smith, S. (1994). The animal fatty acid synthase: one gene, one polypeptide, seven enzymes. The FASEB Journal, 8(15), 1248–1259. Chajes, V., Cambot, M., Moreau, K., Lenoir, G. M., & Joulin, V. (2006). Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival. Cancer Research, 66(10), 5287–5294. Knowles, L. M., Axelrod, F., Browne, C. D., & Smith, J. W. (2004). A fatty acid synthase blockade induces tumor cell-cycle arrest by down-regulating Skp2. Journal of Biological Chemistry, 279(29), 30540–30545. Little, J. L., Wheeler, F. B., Fels, D. R., Koumenis, C., & Kridel, S. J. (2007). Inhibition of fatty acid synthase induces endoplasmic reticulum stress in tumor cells. Cancer Research, 67(3), 1262–1269. Heiligtag, S. J., Bredehorst, R., & David, K. A. (2002). Key role of mitochondria in cerulenin-mediated apoptosis. Cell Death and Differentiation, 9(9), 1017–1025. Fiorentino, M., Zadra, G., Palescandolo, E., et al. (2008). Overexpression of fatty acid synthase is associated with palmitoylation of Wnt1 and cytoplasmic stabilization of beta-catenin in prostate cancer. Laboratory Investigation, 88(12), 1340–1348. Migita, T., Narita, T., Nomura, K., et al. (2008). ATP citrate lyase: activation and therapeutic implications in non-small cell lung cancer. Cancer Research, 68(20), 8547–8554. Brusselmans, K., De Schrijver, E., Verhoeven, G., & Swinnen, J. V. (2005). RNA interference-mediated silencing of the acetyl-CoA-carboxylase-alpha gene induces growth inhibition and apoptosis of prostate cancer cells. Cancer Research, 65(15), 6719–6725. Kridel, S. J., Axelrod, F., Rozenkrantz, N., & Smith, J. W. (2004). Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Research, 64(6), 2070–2075. Alli, P. M., Pinn, M. L., Jaffee, E. M., McFadden, J. M., & Kuhajda, F. P. (2005). Fatty acid synthase inhibitors are chemopreventive for mammary cancer in neu-N transgenic mice. Oncogene, 24(1), 39–46. Kuhajda, F. P., Jenner, K., Wood, F. D., et al. (1994). Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proceedings of the National Academy of Sciences of the United States of America, 91(14), 6379–6383. Orita, H., Coulter, J., Tully, E., Kuhajda, F. P., & Gabrielson, E. (2008). Inhibiting fatty acid synthase for chemoprevention of chemically induced lung tumors. Clinical Cancer Research, 14(8), 2458–2464. Swinnen, J. V., Van Veldhoven, P. P., Timmermans, L., et al. (2003). Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochemical and Biophysical Research Communications, 302(4), 898–903. Rysman, E., Brusselmans, K., Scheys, K., et al. (2010). De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Research, 70(20), 8117–8126. Chakravarthy, M. V., Pan, Z., Zhu, Y., et al. (2005). “New” hepatic fat activates PPAR[alpha] to maintain glucose, lipid, and cholesterol homeostasis. Cell Metabolism, 1(5), 309–322. Chakravarthy, M. V., Lodhi, I. J., Yin, L., et al. (2009). Identification of a physiologically relevant endogenous ligand for PPAR[alpha] in liver. Cell, 138(3), 476–488. De Schrijver, E., Brusselmans, K., Heyns, W., Verhoeven, G., & Swinnen, J. V. (2003). RNA interference-mediated silencing of the fatty acid synthase gene attenuates growth and induces morphological changes and apoptosis of LNCaP prostate cancer cells. Cancer Research, 63(13), 3799–3804. Kuemmerle, N. B., Rysman, E., Lombardo, P. S., et al. (2011). Lipoprotein lipase links dietary fat to solid tumor cell proliferation. Molecular Cancer Therapeutics, 10(3), 427–436. Simopoulos, A. P. (1999). Essential fatty acids in health and chronic disease. American Journal of Clinical Nutrition, 70(3 Suppl), 560S–569S. Crawford, M. A., Casperd, N. M., & Sinclair, A. J. (1976). The long chain metabolites of linoleic avid linolenic acids in liver and brain in herbivores and carnivores. Comparative Biochemistry and Physiology. B, 54(3), 395–401. Horrobin, D. F., Huang, Y. S., Cunnane, S. C., & Manku, M. S. (1984). Essential fatty acids in plasma, red blood cells and liver phospholipids in common laboratory animals as compared to humans. Lipids, 19(10), 806–811. Fu, Z., & Sinclair, A. J. (2000). Increased alpha-linolenic acid intake increases tissue alpha-linolenic acid content and apparent oxidation with little effect on tissue docosahexaenoic acid in the guinea pig. Lipids, 35(4), 395–400. Leyton, J., Drury, P. J., & Crawford, M. A. (1987). Differential oxidation of saturated and unsaturated fatty acids in vivo in the rat. British Journal of Nutrition, 57(3), 383–393. DeLany, J. P., Windhauser, M. M., Champagne, C. M., & Bray, G. A. (2000). Differential oxidation of individual dietary fatty acids in humans. American Journal of Clinical Nutrition, 72(4), 905–911. Gavino, V. C., Cordeau, S., & Gavino, G. (2003). Kinetic analysis of the selectivity of acylcarnitine synthesis in rat mitochondria. Lipids, 38(4), 485–490. Bryan, D. L., Hart, P., Forsyth, K., & Gibson, R. (2001). Incorporation of alpha-linolenic acid and linoleic acid into human respiratory epithelial cell lines. Lipids, 36(7), 713–717. Martin-Chouly, C. A., Menier, V., Hichami, A., et al. (2000). Modulation of PAF production by incorporation of arachidonic acid and eicosapentaenoic acid in phospholipids of human leukemic monocyte-like cells THP-1. Prostaglandins & Other Lipid Mediators, 60(4–6), 127–135. Pickett, W. C., & Ramesha, C. S. (1987). Ether phospholipids in control and 20:4-depleted rat PMN: additional evidence for a 1-O-alkyl-2-20:4-sn-glycerol-3-phosphocholine specific phospholipase A2. Agents and Actions, 21(3–4), 390–392. Strokin, M., Sergeeva, M., & Reiser, G. (2003). Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. British Journal of Pharmacology, 139(5), 1014–1022. Nakanishi, M., & Rosenberg, D. W. (2006). Roles of cPLA2alpha and arachidonic acid in cancer. Biochimica et Biophysica Acta, 1761(11), 1335–1343. Murakami, M., Taketomi, Y., Girard, C., Yamamoto, K., & Lambeau, G. (2010). Emerging roles of secreted phospholipase A2 enzymes: lessons from transgenic and knockout mice. Biochimie, 92(6), 561–582. Scott, K. F., Sajinovic, M., Hein, J., et al. (2010). Emerging roles for phospholipase A2 enzymes in cancer. Biochimie, 92(6), 601–610. Dong, Q., Patel, M., Scott, K. F., Graham, G. G., Russell, P. J., & Sved, P. (2006). Oncogenic action of phospholipase A2 in prostate cancer. Cancer Letters, 240(1), 9–16. Mirtti, T., Laine, V. J., Hiekkanen, H., et al. (2009). Group IIA phospholipase A as a prognostic marker in prostate cancer: relevance to clinicopathological variables and disease-specific mortality. APMIS, 117(3), 151–161. Wang, D., & Dubois, R. N. (2010). Eicosanoids and cancer. Nature Reviews Cancer, 10(3), 181–193. Panigrahy, D., Kaipainen, A., Greene, E. R., & Huang, S. (2010). Cytochrome P450-derived eicosanoids: the neglected pathway in cancer. Cancer Metastasis Reviews, 29(4), 723–735. Chapkin, R. S., Kim, W., Lupton, J. R., & McMurray, D. N. (2009). Dietary docosahexaenoic and eicosapentaenoic acid: emerging mediators of inflammation. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 81(2–3), 187–191. Dubois, R. N., Abramson, S. B., Crofford, L., et al. (1998). Cyclooxygenase in biology and disease. The FASEB Journal, 12(12), 1063–1073. Sobolewski, C., Cerella, C., Dicato, M., Ghibelli, L., & Diederich, M. (2010). The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int J Cell Biol, 2010, 215158. Wang, M. T., Honn, K. V., & Nie, D. (2007). Cyclooxygenases, prostanoids, and tumor progression. Cancer Metastasis Reviews, 26(3–4), 525–534. Reese, A. C., Fradet, V., & Witte, J. S. (2009). Omega-3 fatty acids, genetic variants in COX-2 and prostate cancer. Journal of Nutrigenetics and Nutrigenomics, 2(3), 149–158. Menter, D. G., Schilsky, R. L., & DuBois, R. N. (2010). Cyclooxygenase-2 and cancer treatment: understanding the risk should be worth the reward. Clinical Cancer Research, 16(5), 1384–1390. Brash, A. R. (1999). Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. Journal of Biological Chemistry, 274(34), 23679–23682. Pidgeon, G. P., Lysaght, J., Krishnamoorthy, S., et al. (2007). Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metastasis Reviews, 26(3–4), 503–524. Avis, I. M., Jett, M., Boyle, T., et al. (1996). Growth control of lung cancer by interruption of 5-lipoxygenase-mediated growth factor signaling. The Journal of Clinical Investigation, 97(3), 806–813. Soumaoro, L. T., Iida, S., Uetake, H., et al. (2006). Expression of 5-lipoxygenase in human colorectal cancer. World Journal of Gastroenterology, 12(39), 6355–6360. Ye, Y. N., Wu, W. K., Shin, V. Y., Bruce, I. C., Wong, B. C., & Cho, C. H. (2005). Dual inhibition of 5-LOX and COX-2 suppresses colon cancer formation promoted by cigarette smoke. Carcinogenesis, 26(4), 827–834. Faronato, M., Muzzonigro, G., Milanese, G., et al. (2007). Increased expression of 5-lipoxygenase is common in clear cell renal cell carcinoma. Histology and Histopathology, 22(10), 1109–1118. Hayashi, T., Nishiyama, K., & Shirahama, T. (2006). Inhibition of 5-lipoxygenase pathway suppresses the growth of bladder cancer cells. International Journal of Urology, 13(8), 1086–1091. Ghosh, J. (2003). Inhibition of arachidonate 5-lipoxygenase triggers prostate cancer cell death through rapid activation of c-Jun N-terminal kinase. Biochemical and Biophysical Research Communications, 307(2), 342–349. Ghosh, J., & Myers, C. E. (1998). Inhibition of arachidonate 5-lipoxygenase triggers massive apoptosis in human prostate cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 95(22), 13182–13187. Sharma, B. K., Pilania, P., & Singh, P. (2009). Modeling of cyclooxygenase-2 and 5-lipooxygenase inhibitory activity of apoptosis-inducing agents potentially useful in prostate cancer chemotherapy: derivatives of diarylpyrazole. Journal of Enzyme Inhibition and Medicinal Chemistry, 24(2), 607–615. Sundaram, S., & Ghosh, J. (2006). Expression of 5-oxoETE receptor in prostate cancer cells: critical role in survival. Biochemical and Biophysical Research Communications, 339(1), 93–98. Koh, W. P., Yuan, J. M., van den Berg, D., Lee, H. P., & Yu, M. C. (2004). Interaction between cyclooxygenase-2 gene polymorphism and dietary n-6 polyunsaturated fatty acids on colon cancer risk: the Singapore Chinese Health Study. British Journal of Cancer, 90(9), 1760–1764. Siezen, C. L., van Leeuwen, A. I., Kram, N. R., Luken, M. E., van Kranen, H. J., & Kampman, E. (2005). Colorectal adenoma risk is modified by the interplay between polymorphisms in arachidonic acid pathway genes and fish consumption. Carcinogenesis, 26(2), 449–457. Hedelin, M., Chang, E. T., Wiklund, F., et al. (2007). Association of frequent consumption of fatty fish with prostate cancer risk is modified by COX-2 polymorphism. International Journal of Cancer, 120(2), 398–405. Fradet, V., Cheng, I., Casey, G., & Witte, J. S. (2009). Dietary omega-3 fatty acids, cyclooxygenase-2 genetic variation, and aggressive prostate cancer risk. Clinical Cancer Research, 15(7), 2559–2566. Larsson, S. C., Kumlin, M., Ingelman-Sundberg, M., & Wolk, A. (2004). Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. American Journal of Clinical Nutrition, 79(6), 935–945. Haeggstrom, J. Z., Rinaldo-Matthis, A., Wheelock, C. E., & Wetterholm, A. (2010). Advances in eicosanoid research, novel therapeutic implications. Biochemical and Biophysical Research Communications, 396(1), 135–139. Radmark, O., & Samuelsson, B. (2010). Microsomal prostaglandin E synthase-1 and 5-lipoxygenase: potential drug targets in cancer. Journal of Internal Medicine, 268(1), 5–14. Tanioka, T., Nakatani, Y., Semmyo, N., Murakami, M., & Kudo, I. (2000). Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis. Journal of Biological Chemistry, 275(42), 32775–32782. Park, J. Y., Pillinger, M. H., & Abramson, S. B. (2006). Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Clinical Immunology, 119(3), 229–240. Lovgren, A. K., Kovarova, M., & Koller, B. H. (2007). cPGES/p23 is required for glucocorticoid receptor function and embryonic growth but not prostaglandin E2 synthesis. Molecular and Cellular Biology, 27(12), 4416–4430. Hanaka, H., Pawelzik, S. C., Johnsen, J. I., et al. (2009). Microsomal prostaglandin E synthase 1 determines tumor growth in vivo of prostate and lung cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 106(44), 18757–18762. Amirian, E. S., Ittmann, M. M., & Scheurer, M. E. (2011). Associations between arachidonic acid metabolism gene polymorphisms and prostate cancer risk. Prostate, 71(13), 1382–1389. Cathcart, M. C., Reynolds, J. V., O’Byrne, K. J., & Pidgeon, G. P. (2010). The role of prostacyclin synthase and thromboxane synthase signaling in the development and progression of cancer. Biochimica et Biophysica Acta, 1805(2), 153–166. Frigola, J., Munoz, M., Clark, S. J., Moreno, V., Capella, G., & Peinado, M. A. (2005). Hypermethylation of the prostacyclin synthase (PTGIS) promoter is a frequent event in colorectal cancer and associated with aneuploidy. Oncogene, 24(49), 7320–7326. Poole, E. M., Bigler, J., Whitton, J., Sibert, J. G., Potter, J. D., & Ulrich, C. M. (2006). Prostacyclin synthase and arachidonate 5-lipoxygenase polymorphisms and risk of colorectal polyps. Cancer Epidemiology, Biomarkers & Prevention, 15(3), 502–508. Ermert, L., Dierkes, C., & Ermert, M. (2003). Immunohistochemical expression of cyclooxygenase isoenzymes and downstream enzymes in human lung tumors. Clinical Cancer Research, 9(5), 1604–1610. Nana-Sinkam, P., Golpon, H., Keith, R. L., et al. (2004). Prostacyclin in human non-small cell lung cancers. Chest, 125(5 Suppl), 141S. Niknami, M., Vignarajan, S., Yao, M., et al. (2010). Decrease in expression or activity of cytosolic phospholipase A2alpha increases cyclooxygenase-1 action: a cross-talk between key enzymes in arachidonic acid pathway in prostate cancer cells. Biochimica et Biophysica Acta, 1801(7), 731–737. Nie, D., Che, M., Zacharek, A., et al. (2004). Differential expression of thromboxane synthase in prostate carcinoma: role in tumor cell motility. American Journal of Pathology, 164(2), 429–439. Narumiya, S., Sugimoto, Y., & Ushikubi, F. (1999). Prostanoid receptors: structures, properties, and functions. Physiological Reviews, 79(4), 1193–1226. Chen, Y., & Hughes-Fulford, M. (2000). Prostaglandin E2 and the protein kinase A pathway mediate arachidonic acid induction of c-fos in human prostate cancer cells. British Journal of Cancer, 82(12), 2000–2006. Wang, X., & Klein, R. D. (2007). Prostaglandin E2 induces vascular endothelial growth factor secretion in prostate cancer cells through EP2 receptor-mediated cAMP pathway. Molecular Carcinogenesis, 46(11), 912–923. Dassesse, T., de Leval, X., de Leval, L., Pirotte, B., Castronovo, V., & Waltregny, D. (2006). Activation of the thromboxane A2 pathway in human prostate cancer correlates with tumor Gleason score and pathologic stage. Eur Urol, 50(5), 1021–1031. discussion 31. Nie, D., Guo, Y., Yang, D., et al. (2008). Thromboxane A2 receptors in prostate carcinoma: expression and its role in regulating cell motility via small GTPase rho. Cancer Research, 68(1), 115–121. Mahmud, S., Franco, E., & Aprikian, A. (2004). Prostate cancer and use of nonsteroidal anti-inflammatory drugs: systematic review and meta-analysis. British Journal of Cancer, 90(1), 93–99. Platz, E. A., Rohrmann, S., Pearson, J. D., et al. (2005). Nonsteroidal anti-inflammatory drugs and risk of prostate cancer in the Baltimore Longitudinal Study of Aging. Cancer Epidemiology, Biomarkers & Prevention, 14(2), 390–396. Chan, J. M., Feraco, A., Shuman, M., & Hernandez-Diaz, S. (2006). The epidemiology of prostate cancer—with a focus on nonsteroidal anti-inflammatory drugs. Hematology/Oncology Clinics of North America, 20(4), 797–809. Salinas, C. A., Kwon, E. M., FitzGerald, L. M., et al. (2010). Use of aspirin and other nonsteroidal antiinflammatory medications in relation to prostate cancer risk. American Journal of Epidemiology, 172(5), 578–590. Wang, D., & Dubois, R. N. (2010). The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene, 29(6), 781–788. Chapkin, R. S., Seo, J., McMurray, D. N., & Lupton, J. R. (2008). Mechanisms by which docosahexaenoic acid and related fatty acids reduce colon cancer risk and inflammatory disorders of the intestine. Chemistry and Physics of Lipids, 153(1), 14–23. Wall, R., Ross, R. P., Fitzgerald, G. F., & Stanton, C. (2010). Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutrition Reviews, 68(5), 280–289. Wang, D., & DuBois, R. N. (2008). Pro-inflammatory prostaglandins and progression of colorectal cancer. Cancer Letters, 267(2), 197–203. Wymann, M. P., & Schneiter, R. (2008). Lipid signalling in disease. Nature Reviews Molecular Cell Biology, 9(2), 162–176. Folkman, J., Cole, P., & Zimmerman, S. (1966). Tumor behavior in isolated perfused organs: in vitro growth and metastases of biopsy material in rabbit thyroid and canine intestinal segment. Annals of Surgery, 164(3), 491–502. Gimbrone, M. A., Jr., Leapman, S. B., Cotran, R. S., & Folkman, J. (1972). Tumor dormancy in vivo by prevention of neovascularization. The Journal of Experimental Medicine, 136(2), 261–276. Borre, M., Offersen, B. V., Nerstrom, B., & Overgaard, J. (1998). Microvessel density predicts survival in prostate cancer patients subjected to watchful waiting. British Journal of Cancer, 78(7), 940–944. Bono, A. V., Celato, N., Cova, V., Salvadore, M., Chinetti, S., & Novario, R. (2002). Microvessel density in prostate carcinoma. Prostate Cancer and Prostatic Diseases, 5(2), 123–127. Ferrara, N. (2004). Vascular endothelial growth factor: basic science and clinical progress. Endocrine Reviews, 25(4), 581–611. Tsuzuki, T., Shibata, A., Kawakami, Y., Nakagawa, K., & Miyazawa, T. (2007). Conjugated eicosapentaenoic acid inhibits vascular endothelial growth factor-induced angiogenesis by suppressing the migration of human umbilical vein endothelial cells. Journal of Nutrition, 137(3), 641–646. Tsuji, M., Murota, S. I., & Morita, I. (2003). Docosapentaenoic acid (22:5, n-3) suppressed tube-forming activity in endothelial cells induced by vascular endothelial growth factor. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 68(5), 337–342. Yang, S. P., Morita, I., & Murota, S. I. (1998). Eicosapentaenoic acid attenuates vascular endothelial growth factor-induced proliferation via inhibiting Flk-1 receptor expression in bovine carotid artery endothelial cells. Journal of Cellular Physiology, 176(2), 342–349. Calviello, G., Di Nicuolo, F., Gragnoli, S., et al. (2004). n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and -2 and HIF-1alpha induction pathway. Carcinogenesis, 25(12), 2303–2310. Connor, K. M., SanGiovanni, J. P., Lofqvist, C., et al. (2007). Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nature Medicine, 13(7), 868–873. Stahl, A., Sapieha, P., Connor, K. M., et al. (2010). Short communication: PPAR gamma mediates a direct antiangiogenic effect of omega 3-PUFAs in proliferative retinopathy. Circulation Research, 107(4), 495–500. Sapieha, P., Stahl, A., Chen, J., et al. (2011). 5-Lipoxygenase metabolite 4-HDHA is a mediator of the antiangiogenic effect of {omega}-3 polyunsaturated fatty acids. Science Translational Medicine, 3(69), 69ra12. Rose, D. P., & Connolly, J. M. (1999). Antiangiogenicity of docosahexaenoic acid and its role in the suppression of breast cancer cell growth in nude mice. International Journal of Oncology, 15(5), 1011–1015. Ambring, A., Johansson, M., Axelsen, M., Gan, L., Strandvik, B., & Friberg, P. (2006). Mediterranean-inspired diet lowers the ratio of serum phospholipid n-6 to n-3 fatty acids, the number of leukocytes and platelets, and vascular endothelial growth factor in healthy subjects. American Journal of Clinical Nutrition, 83(3), 575–581. Fox, P. L., & DiCorleto, P. E. (1988). Fish oils inhibit endothelial cell production of platelet-derived growth factor-like protein. Science, 241(4864), 453–456. Kaminski, W. E., Jendraschak, E., Kiefl, R., & von Schacky, C. (1993). Dietary omega-3 fatty acids lower levels of platelet-derived growth factor mRNA in human mononuclear cells. Blood, 81(7), 1871–1879. Powers, C. J., McLeskey, S. W., & Wellstein, A. (2000). Fibroblast growth factors, their receptors and signaling. Endocrine-Related Cancer, 7(3), 165–197. Ornitz, D. M., & Itoh, N. (2001). Fibroblast growth factors. Genome Biology, 2(3), REVIEWS3005. Kwabi-Addo, B., Ozen, M., & Ittmann, M. (2004). The role of fibroblast growth factors and their receptors in prostate cancer. Endocrine-Related Cancer, 11(4), 709–724. Li, Z. G., Mathew, P., Yang, J., et al. (2008). Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms. The Journal of Clinical Investigation, 118(8), 2697–2710. Heer, R., Douglas, D., Mathers, M. E., Robson, C. N., & Leung, H. Y. (2004). Fibroblast growth factor 17 is over-expressed in human prostate cancer. The Journal of Pathology, 204(5), 578–586. Folkman, J., & Shing, Y. (1992). Angiogenesis. Journal of Biological Chemistry, 267(16), 10931–10934. Dorkin, T. J., Robinson, M. C., Marsh, C., Neal, D. E., & Leung, H. Y. (1999). aFGF immunoreactivity in prostate cancer and its co-localization with bFGF and FGF8. The Journal of Pathology, 189(4), 564–569. Polnaszek, N., Kwabi-Addo, B., Peterson, L. E., et al. (2003). Fibroblast growth factor 2 promotes tumor progression in an autochthonous mouse model of prostate cancer. Cancer Research, 63(18), 5754–5760. Gnanapragasam, V. J., Robinson, M. C., Marsh, C., Robson, C. N., Hamdy, F. C., & Leung, H. Y. (2003). FGF8 isoform b expression in human prostate cancer. British Journal of Cancer, 88(9), 1432–1438. Valta, M. P., Tuomela, J., Vuorikoski, H., et al. (2009). FGF-8b induces growth and rich vascularization in an orthotopic PC-3 model of prostate cancer. Journal of Cellular Biochemistry, 107(4), 769–784. Elo, T. D., Valve, E. M., Seppanen, J. A., et al. (2010). Stromal activation associated with development of prostate cancer in prostate-targeted fibroblast growth factor 8b transgenic mice. Neoplasia, 12(11), 915–927. Kasayama, S., Koga, M., Kouhara, H., et al. (1994). Unsaturated fatty acids are required for continuous proliferation of transformed androgen-dependent cells by fibroblast growth factor family proteins. Cancer Research, 54(24), 6441–6445. Iwasaki, A., & Medzhitov, R. (2004). Toll-like receptor control of the adaptive immune responses. Nature Immunology, 5(10), 987–995. Huang, B., Zhao, J., Li, H., et al. (2005). Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Research, 65(12), 5009–5014. Kelly, M. G., Alvero, A. B., Chen, R., et al. (2006). TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Research, 66(7), 3859–3868. Rakoff-Nahoum, S., & Medzhitov, R. (2009). Toll-like receptors and cancer. Nature Reviews Cancer, 9(1), 57–63. Zheng, S. L., Augustsson-Balter, K., Chang, B., et al. (2004). Sequence variants of toll-like receptor 4 are associated with prostate cancer risk: results from the Cancer Prostate in Sweden Study. Cancer Research, 64(8), 2918–2922. Sun, J., Wiklund, F., Zheng, S. L., et al. (2005). Sequence variants in toll-like receptor gene cluster (TLR6-TLR1-TLR10) and prostate cancer risk. Journal of the National Cancer Institute, 97(7), 525–532. Lee, J. Y., Plakidas, A., Lee, W. H., et al. (2003). Differential modulation of toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids. Journal of Lipid Research, 44(3), 479–486. Lee, J. Y., Zhao, L., Youn, H. S., et al. (2004). Saturated fatty acid activates but polyunsaturated fatty acid inhibits toll-like receptor 2 dimerized with toll-like receptor 6 or 1. Journal of Biological Chemistry, 279(17), 16971–16979. Paone, A., Galli, R., Gabellini, C., et al. (2010). Toll-like receptor 3 regulates angiogenesis and apoptosis in prostate cancer cell lines through hypoxia-inducible factor 1 alpha. Neoplasia, 12(7), 539–549. Rapraeger, A., Jalkanen, M., Endo, E., Koda, J., & Bernfield, M. (1985). The cell surface proteoglycan from mouse mammary epithelial cells bears chondroitin sulfate and heparan sulfate glycosaminoglycans. Journal of Biological Chemistry, 260(20), 11046–11052. Manon-Jensen, T., Itoh, Y., & Couchman, J. R. (2010). Proteoglycans in health and disease: the multiple roles of syndecan shedding. The FEBS Journal, 277(19), 3876–3889. Inki, P., & Jalkanen, M. (1996). The role of syndecan-1 in malignancies. Annali Medici, 28(1), 63–67. Matsumoto, A., Ono, M., Fujimoto, Y., Gallo, R. L., Bernfield, M., & Kohgo, Y. (1997). Reduced expression of syndecan-1 in human hepatocellular carcinoma with high metastatic potential. International Journal of Cancer, 74(5), 482–491. Kumar-Singh, S., Jacobs, W., Dhaene, K., et al. (1998). Syndecan-1 expression in malignant mesothelioma: correlation with cell differentiation, WT1 expression, and clinical outcome. The Journal of Pathology, 186(3), 300–305. Loussouarn, D., Campion, L., Sagan, C., et al. (2008). Prognostic impact of syndecan-1 expression in invasive ductal breast carcinomas. British Journal of Cancer, 98(12), 1993–1998. Barbareschi, M., Maisonneuve, P., Aldovini, D., et al. (2003). High syndecan-1 expression in breast carcinoma is related to an aggressive phenotype and to poorer prognosis. Cancer, 98(3), 474–483. Davies, E. J., Blackhall, F. H., Shanks, J. H., et al. (2004). Distribution and clinical significance of heparan sulfate proteoglycans in ovarian cancer. Clinical Cancer Research, 10(15), 5178–5186. Choi, D. S., Kim, J. H., Ryu, H. S., et al. (2007). Syndecan-1, a key regulator of cell viability in endometrial cancer. International Journal of Cancer, 121(4), 741–750. Stanley, M. J., Stanley, M. W., Sanderson, R. D., & Zera, R. (1999). Syndecan-1 expression is induced in the stroma of infiltrating breast carcinoma. American Journal of Clinical Pathology, 112(3), 377–383. Mennerich, D., Vogel, A., Klaman, I., et al. (2004). Shift of syndecan-1 expression from epithelial to stromal cells during progression of solid tumours. European Journal of Cancer, 40(9), 1373–1382. Wiksten, J. P., Lundin, J., Nordling, S., et al. (2001). Epithelial and stromal syndecan-1 expression as predictor of outcome in patients with gastric cancer. International Journal of Cancer, 95(1), 1–6. Kiviniemi, J., Kallajoki, M., Kujala, I., et al. (2004). Altered expression of syndecan-1 in prostate cancer. APMIS, 112(2), 89–97. Chen, D., Adenekan, B., Chen, L., et al. (2004). Syndecan-1 expression in locally invasive and metastatic prostate cancer. Urology, 63(2), 402–407. Zellweger, T., Ninck, C., Mirlacher, M., et al. (2003). Tissue microarray analysis reveals prognostic significance of syndecan-1 expression in prostate cancer. Prostate, 55(1), 20–29. Hu, Y., Sun, H., Owens, R. T., et al. (2010). Syndecan-1-dependent suppression of PDK1/Akt/bad signaling by docosahexaenoic acid induces apoptosis in prostate cancer. Neoplasia, 12(10), 826–836. Edwards, I. J., Sun, H., Hu, Y., et al. (2008). In vivo and in vitro regulation of syndecan 1 in prostate cells by N-3 polyunsaturated fatty acids. Journal of Biological Chemistry, 283(26), 18441–18449. Edwards, I. J., Berquin, I. M., Sun, H., et al. (2004). Differential effects of delivery of omega-3 fatty acids to human cancer cells by low-density lipoproteins versus albumin. Clinical Cancer Research, 10(24), 8275–8283. Sun, H., Berquin, I. M., & Edwards, I. J. (2005). Omega-3 polyunsaturated fatty acids regulate syndecan-1 expression in human breast cancer cells. Cancer Research, 65(10), 4442–4447. Park, P. W., Pier, G. B., Hinkes, M. T., & Bernfield, M. (2001). Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence. Nature, 411(6833), 98–102. Li, Q., Park, P. W., Wilson, C. L., & Parks, W. C. (2002). Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell, 111(5), 635–646. Xu, J., Park, P. W., Kheradmand, F., & Corry, D. B. (2005). Endogenous attenuation of allergic lung inflammation by syndecan-1. Journal of Immunology, 174(9), 5758–5765. Gotte, M., Joussen, A. M., Klein, C., et al. (2002). Role of syndecan-1 in leukocyte-endothelial interactions in the ocular vasculature. Investigative Ophthalmology & Visual Science, 43(4), 1135–1141. Gotte, M., Bernfield, M., & Joussen, A. M. (2005). Increased leukocyte-endothelial interactions in syndecan-1-deficient mice involve heparan sulfate-dependent and -independent steps. Current Eye Research, 30(6), 417–422. Gardiner, T. A., Gibson, D. S., de Gooyer, T. E., de la Cruz, V. F., McDonald, D. M., & Stitt, A. W. (2005). Inhibition of tumor necrosis factor-alpha improves physiological angiogenesis and reduces pathological neovascularization in ischemic retinopathy. American Journal of Pathology, 166(2), 637–644. Kainulainen, V., Nelimarkka, L., Jarvelainen, H., Laato, M., Jalkanen, M., & Elenius, K. (1996). Suppression of syndecan-1 expression in endothelial cells by tumor necrosis factor-alpha. Journal of Biological Chemistry, 271(31), 18759–18766.