Polythiophene nanocomposites for photodegradation applications: Past, present and future

Journal of Saudi Chemical Society - Tập 19 Số 5 - Trang 494-504 - 2015
Mohammad Omaish Ansari1, Mohammad Mansoob Khan2, Sajid Ali Ansari1, Moo Hwan Cho1
1School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk 712-749, South Korea
2Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE 1410, Brunei Darussalam

Tóm tắt

Từ khóa


Tài liệu tham khảo

Shih, 2015, The effect of water purification by oyster shell contact bed, Ecol. Eng., 77, 382, 10.1016/j.ecoleng.2015.01.014

Kumar, 2013, DBSA doped polyaniline/multi-walled carbon nanotubes composite for high efficiency removal of Cr(VI) from aqueous solution, Chem. Eng. J., 228, 748, 10.1016/j.cej.2013.05.024

Pricelius, 2007, Enzymatic reduction and oxidation of fibre-bound azo-dyes, Enzyme Microb. Technol., 40, 1732, 10.1016/j.enzmictec.2006.11.004

Cao, 2014, Mercury adsorption from fuel ethanol onto phosphonated silica gel prepared by heterogenous method, Renewable Energy, 71, 61, 10.1016/j.renene.2014.05.028

Fujishima, 1972, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37, 10.1038/238037a0

Rashad, 2014, Photocatalytic decomposition of dyes using ZnO doped SnO2 nanoparticles prepared by solvothermal method, Arabian J. Chem., 7, 71, 10.1016/j.arabjc.2013.08.016

Ansari, 2013, Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm, Nanoscale, 5, 9238, 10.1039/c3nr02678g

Kalathil, 2013, Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilms and their visible light activity, Nanoscale, 5, 6323, 10.1039/c3nr01280h

Khan, 2013, Highly visible light active Ag@TiO2 nanocomposites synthesized using an electrochemically active biofilm: a novel biogenic approach, Nanoscale, 5, 4427, 10.1039/c3nr00613a

Khan, 2014, Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies, J. Mater. Chem. A, 2, 637, 10.1039/C3TA14052K

Ansari, 2014, Band gap engineering of CeO2 nanostructure using an electrochemically active biofilm for visible light applications, RSC Adv., 4, 16782, 10.1039/C4RA00861H

Ansari, 2014, Visible light-driven photocatalytic and photoelectrochemical studies of Ag–SnO2 nanocomposites synthesized using an electrochemically active biofilm, RSC Adv., 4, 26013, 10.1039/C4RA03448A

Wang, 2014, First-principles study on transition metal-doped anatase TiO2, Nanoscale Res. Lett., 9, 46, 10.1186/1556-276X-9-46

Ahmmad, 2010, One-step and large scale synthesis of non-metal doped TiO2 submicrospheres and their photocatalytic activity, Adv. Powder Technol., 21, 292, 10.1016/j.apt.2009.12.009

Mukherjee, 2014, Preparation and characterization of the TiO2 immobilized polymeric photocatalyst for degradation of aspirin under UV and solar light, Processes, 2, 12, 10.3390/pr2010012

Shirakawa, 1977, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x, J. Chem. Soc., Chem. Commun., 16, 578, 10.1039/c39770000578

Ansari, 2011, Thermal stability, electrical conductivity and ammonia sensing studies onp-toluenesulfonic acid doped polyaniline:titanium dioxide (pTSA/Pani:TiO2) nanocomposites, Sens. Actuators B, 157, 122, 10.1016/j.snb.2011.03.036

Patois, 2012, Ammonia gas sensors based on polypyrrole films: influence of electrodeposition parameters, Sens. Actuators B, 171–172, 431, 10.1016/j.snb.2012.05.005

Ansari, 2014, Enhanced thermal stability under DC electrical conductivity retention and visible light activity of Ag/TiO2@Polyaniline nanocomposite film, ACS Appl. Mater. Interfaces, 6, 8124, 10.1021/am500488e

Gonçalves, 2012, Optical chemical sensors using polythiophene derivatives as active layer for detection of volatile organic compounds, Sens. Actuators B, 162, 307, 10.1016/j.snb.2011.12.084

Qiu, 2012, Visible light induced photocatalytic reduction of Cr(VI) over polymer-sensitized TiO2 and its synergism with phenol oxidation, Water Res., 46, 2299, 10.1016/j.watres.2012.01.046

McCullough, 1998, The chemistry of conducting polythiophenes, Adv. Mater., 10, 93, 10.1002/(SICI)1521-4095(199801)10:2<93::AID-ADMA93>3.0.CO;2-F

Krüger, 2011, Band-gap engineering of polythiophenes, J. Polym. Sci. Pol. Chem., 49, 1201, 10.1002/pola.24538

Lambert, 1991, Narrow band gap polymers: polycyclopenta[2,1-b;3,4-b′]dithiophen-4-one, J. Chem. Soc. Chem. Commun., 11, 752, 10.1039/C39910000752

Toussaint, 1993, Novel low bandgap polymers: polydicyanomethylene – cyclopentadithiophene and -dipyrrole, Synth. Met., 23, 103, 10.1016/0379-6779(93)91205-G

Roncali, 2007, Molecular engineering of the band gap of π-conjugated systems: facing technological applications, Macromol. Rapid Commun., 28, 1761, 10.1002/marc.200700345

Roncali, 1987, Effects of steric factors on the electrosynthesis and properties of conducting poly(3-alkyithiophenes), J. Phys. Chem., 91, 6706, 10.1021/j100311a030

Zhai, 2004, Regioregular polythiophene/gold nanoparticle hybrid materials, J. Mater. Chem., 14, 141, 10.1039/b305407a

Sivakumar, 2014, Photocatalytic and antimicrobial activities of poly(aniline-co-o-anisidine)/zinc oxide nanocomposite, Asian J. Chem., 26, 600, 10.14233/ajchem.2014.16274

Wu, 1998, Photoassisted degradation of dye pollutants. V. self-photosensitized oxidative transformation of Rhodamine B under visible light irradiation in aqueous TiO2 dispersions, J. Phys. Chem. B, 102, 5845, 10.1021/jp980922c

Zhang, 2008, Investigation of the roles of active oxygen species in photodegradation of azo dye AO7 in TiO2 photocatalysis illuminated by microwave electrodeless lamp, J. Photochem. Photobiol. A, 199, 311, 10.1016/j.jphotochem.2008.06.009

Wang, 2003, A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte, Nat. Mater., 2, 402, 10.1038/nmat904

Zhu, 2008, Synthesis and characterization of polythiophene/titanium dioxide composites, React. Funct. Polym., 68, 1492, 10.1016/j.reactfunctpolym.2008.07.008

Li, 2008, Characterization of natural sphalerite as a novel visible light-driven photocatalyst, Sol. Energy Mater. Sol. Cells, 92, 953, 10.1016/j.solmat.2008.02.023

Xu, 2010, Visible light induced photocatalytic degradation of methyl orange by polythiophene/TiO2 composite particles, Water Air Soil Pollut., 213, 151, 10.1007/s11270-010-0374-4

Zhu, 2010, Photocatalytic degradation of methyl orange using polythiophene/titanium dioxide, React. Funct. Polym., 70, 282, 10.1016/j.reactfunctpolym.2010.01.007

Wang, 2013, One-dimensional nanostructured polyaniline: syntheses, morphology controlling, formation mechanisms, new features, and applications, Adv. Polym. Technol., 32, 323, 10.1002/adv.21283

Cheng, 2012, Synthesis of polythiophene nanoparticles by microemulsion polymerization for photocatalysis, Adv. Mater. Res., 399–401, 1312

Liang, 2009, Visible-induced photocatalytic reactivity of polymer–sensitized titania nanotube films, Appl. Catal. B, 86, 8, 10.1016/j.apcatb.2008.07.015

Strandwitz, 2010, In situ photopolymerization of pyrrole in mesoporous TiO2, Langmuir, 26, 5319, 10.1021/la100913e

Weng, 2008, Oxidative polymerization of pyrrole photocatalyzed by TiO2 nanoparticles and interactions in the composites, J. Appl. Polym. Sci., 110, 109, 10.1002/app.28636

Xu, 2011, Structure and photocatalytic activity of polythiophene/TiO2 composite particles prepared by photoinduced polymerization, Chin. J. Catal., 32, 536, 10.1016/S1872-2067(10)60207-0

Fu, 2008, Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C60, Environ. Sci. Technol., 42, 8064, 10.1021/es801484x

Khatamian, 2014, Preparation, characterization and photocatalytic properties of polythiophene-sensitized zinc oxide hybrid nanocomposites, Mater. Sci. Semicond. Process., 26, 540, 10.1016/j.mssp.2014.04.038

Lv, 2015, Improving the visible light photocatalytic activities of Bi25FeO40/MIL-101/PTH via polythiophene wrapping, J. Environ. Chem. Eng., 3, 1003, 10.1016/j.jece.2014.11.009

Motaung, 2009, Thermal-induced changes on the properties of spin-coated P3HT:C60 thin films for solar cell applications, Sol. Energy Mater. Sol. Cells, 93, 1674, 10.1016/j.solmat.2009.05.016

Muktha, 2007, Synthesis and photocatalytic activity of poly(3-hexylthiophene)/TiO2 composites, J. Solid State Chem., 180, 2986, 10.1016/j.jssc.2007.07.017

Wang, 2009, Characterization and photocatalytic activity of poly(3-hexylthiophene)-modified TiO2 for degradation of methyl orange under visible light, J. Hazard. Mater., 169, 546, 10.1016/j.jhazmat.2009.03.135

Zhu, 2010, Photocatalytic activity of poly(3-hexylthiophene)/titanium dioxide composites for degrading methyl orange, Sol. Energy Mater. Sol. Cells, 94, 1658, 10.1016/j.solmat.2010.05.025

Xu, 2012, The influence of the oxidation degree of poly(3-hexylthiophene) on the photocatalytic activity of poly(3-hexylthiophene)/TiO2 composites, Sol. Energy Mater. Sol. Cells, 96, 286, 10.1016/j.solmat.2011.09.022

Song, 2007, Photodegradation of phenol in a polymer-modified TiO2 semiconductor particulate system under the irradiation of visible light, Catal. Commun., 8, 429, 10.1016/j.catcom.2006.07.001

Qiu, 2008, Photocatalytic activity of polymer-modified ZnO under visible light irradiation, J. Hazard. Mater., 156, 80, 10.1016/j.jhazmat.2007.11.114

Ali, 2013, Structure and properties of solid-state synthesized poly(3,4-propylenedioxythiophene)/nano-ZnO composite, Prog. Nat. Sci. Mater. Int., 23, 524, 10.1016/j.pnsc.2013.11.002

Fu, 2012, The synthesis and properties of ZnO–graphene nano hybrid for photodegradation of organic pollutant in water, Mater. Chem. Phys., 132, 673, 10.1016/j.matchemphys.2011.11.085

Abdiryim, 2012, Solid-state synthesis and characterization of polyaniline/nano-TiO2 composite, J. Appl. Polym. Sci., 126, 697, 10.1002/app.36857

Wang, 2012, Graphene oxide–polythiophene hybrid with broad-band absorption and photocatalytic properties, J. Phys. Chem. Lett., 3, 2332, 10.1021/jz300930u

Wang, 2014, Simple synthesis and photoelectrochemical characterizations of polythiophene/Pd/TiO2 composite microspheres, ACS Appl. Mater. Interface, 6, 20197, 10.1021/am505720a

Chandra, 2015, An enhanced visible light active rutile titania-copper/polythiophene nanohybrid material for the degradation of rhodamine B dye, Mater. Sci. Semicond. Process., 30, 672, 10.1016/j.mssp.2014.09.009

Boutoumi, 2013, Synthesis and characterization of TiO2-montmorillonite/polythiophene-SDS nanocomposites: application in the sonophotocatalytic degradation of rhodamine 6G, Appl. Clay Sci., 80–81, 56, 10.1016/j.clay.2013.06.005

Pirola, 2003, Degradation of organic water pollutants through sonophotocatalysis in the presence of TiO2, Ultrason. Sonochem., 10, 247, 10.1016/S1350-4177(03)00090-7

Matsunaga, 2006, Photochemical sterilization of microbial cells by semiconductor powders, FEMS Microbiol. Lett., 29, 211, 10.1111/j.1574-6968.1985.tb00864.x

Akhavan, 2009, Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation, J. Phys. Chem. C, 113, 20214, 10.1021/jp906325q

Čík, 2006, Inactivation of bacteria G+-S. aureus and G−-E. coli by phototoxic polythiophene incorporated in ZSM-5 zeolite, Chemosphere, 63, 1419, 10.1016/j.chemosphere.2005.10.017

Shang, 2011, Effective photocatalytic disinfection of E. coli and S. aureus using polythiophene/MnO2 nanocomposite photocatalyst under solar light irradiation, Desalination, 278, 173, 10.1016/j.desal.2011.05.017

Shang, 2013, Poly-(3-thiopheneacetic acid) coated Fe3O4@LDHs magnetic nanospheres as a photocatalyst for the efficient photocatalytic disinfection of pathogenic bacteria under solar light irradiation, New J. Chem., 37, 2509, 10.1039/c3nj00148b

Wen, 2000, Photocatalytic properties of poly(3-octylthiophene-2,5-diyl) film blended with sensitizer for the degradation of iprobenfos fungicide, J. Photochem. Photobiol. A, 137, 45, 10.1016/S1010-6030(00)00353-1

Wen, 2000, Visible light-induced catalytic degradation of iprobenfos fungicide by poly(3-octylthiophene-2,5-diyl) film, J. Photochem. Photobiol. A, 133, 59, 10.1016/S1010-6030(00)00206-9

Hoffmann, 1995, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95, 69, 10.1021/cr00033a004