Polythiophene nanocomposites for photodegradation applications: Past, present and future
Tóm tắt
Từ khóa
Tài liệu tham khảo
Shih, 2015, The effect of water purification by oyster shell contact bed, Ecol. Eng., 77, 382, 10.1016/j.ecoleng.2015.01.014
Kumar, 2013, DBSA doped polyaniline/multi-walled carbon nanotubes composite for high efficiency removal of Cr(VI) from aqueous solution, Chem. Eng. J., 228, 748, 10.1016/j.cej.2013.05.024
Pricelius, 2007, Enzymatic reduction and oxidation of fibre-bound azo-dyes, Enzyme Microb. Technol., 40, 1732, 10.1016/j.enzmictec.2006.11.004
Cao, 2014, Mercury adsorption from fuel ethanol onto phosphonated silica gel prepared by heterogenous method, Renewable Energy, 71, 61, 10.1016/j.renene.2014.05.028
Fujishima, 1972, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37, 10.1038/238037a0
Rashad, 2014, Photocatalytic decomposition of dyes using ZnO doped SnO2 nanoparticles prepared by solvothermal method, Arabian J. Chem., 7, 71, 10.1016/j.arabjc.2013.08.016
Ansari, 2013, Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm, Nanoscale, 5, 9238, 10.1039/c3nr02678g
Kalathil, 2013, Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilms and their visible light activity, Nanoscale, 5, 6323, 10.1039/c3nr01280h
Khan, 2013, Highly visible light active Ag@TiO2 nanocomposites synthesized using an electrochemically active biofilm: a novel biogenic approach, Nanoscale, 5, 4427, 10.1039/c3nr00613a
Khan, 2014, Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies, J. Mater. Chem. A, 2, 637, 10.1039/C3TA14052K
Ansari, 2014, Band gap engineering of CeO2 nanostructure using an electrochemically active biofilm for visible light applications, RSC Adv., 4, 16782, 10.1039/C4RA00861H
Ansari, 2014, Visible light-driven photocatalytic and photoelectrochemical studies of Ag–SnO2 nanocomposites synthesized using an electrochemically active biofilm, RSC Adv., 4, 26013, 10.1039/C4RA03448A
Wang, 2014, First-principles study on transition metal-doped anatase TiO2, Nanoscale Res. Lett., 9, 46, 10.1186/1556-276X-9-46
Ahmmad, 2010, One-step and large scale synthesis of non-metal doped TiO2 submicrospheres and their photocatalytic activity, Adv. Powder Technol., 21, 292, 10.1016/j.apt.2009.12.009
Mukherjee, 2014, Preparation and characterization of the TiO2 immobilized polymeric photocatalyst for degradation of aspirin under UV and solar light, Processes, 2, 12, 10.3390/pr2010012
Shirakawa, 1977, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x, J. Chem. Soc., Chem. Commun., 16, 578, 10.1039/c39770000578
Ansari, 2011, Thermal stability, electrical conductivity and ammonia sensing studies onp-toluenesulfonic acid doped polyaniline:titanium dioxide (pTSA/Pani:TiO2) nanocomposites, Sens. Actuators B, 157, 122, 10.1016/j.snb.2011.03.036
Patois, 2012, Ammonia gas sensors based on polypyrrole films: influence of electrodeposition parameters, Sens. Actuators B, 171–172, 431, 10.1016/j.snb.2012.05.005
Ansari, 2014, Enhanced thermal stability under DC electrical conductivity retention and visible light activity of Ag/TiO2@Polyaniline nanocomposite film, ACS Appl. Mater. Interfaces, 6, 8124, 10.1021/am500488e
Gonçalves, 2012, Optical chemical sensors using polythiophene derivatives as active layer for detection of volatile organic compounds, Sens. Actuators B, 162, 307, 10.1016/j.snb.2011.12.084
Qiu, 2012, Visible light induced photocatalytic reduction of Cr(VI) over polymer-sensitized TiO2 and its synergism with phenol oxidation, Water Res., 46, 2299, 10.1016/j.watres.2012.01.046
McCullough, 1998, The chemistry of conducting polythiophenes, Adv. Mater., 10, 93, 10.1002/(SICI)1521-4095(199801)10:2<93::AID-ADMA93>3.0.CO;2-F
Krüger, 2011, Band-gap engineering of polythiophenes, J. Polym. Sci. Pol. Chem., 49, 1201, 10.1002/pola.24538
Lambert, 1991, Narrow band gap polymers: polycyclopenta[2,1-b;3,4-b′]dithiophen-4-one, J. Chem. Soc. Chem. Commun., 11, 752, 10.1039/C39910000752
Toussaint, 1993, Novel low bandgap polymers: polydicyanomethylene – cyclopentadithiophene and -dipyrrole, Synth. Met., 23, 103, 10.1016/0379-6779(93)91205-G
Roncali, 2007, Molecular engineering of the band gap of π-conjugated systems: facing technological applications, Macromol. Rapid Commun., 28, 1761, 10.1002/marc.200700345
Roncali, 1987, Effects of steric factors on the electrosynthesis and properties of conducting poly(3-alkyithiophenes), J. Phys. Chem., 91, 6706, 10.1021/j100311a030
Zhai, 2004, Regioregular polythiophene/gold nanoparticle hybrid materials, J. Mater. Chem., 14, 141, 10.1039/b305407a
Sivakumar, 2014, Photocatalytic and antimicrobial activities of poly(aniline-co-o-anisidine)/zinc oxide nanocomposite, Asian J. Chem., 26, 600, 10.14233/ajchem.2014.16274
Wu, 1998, Photoassisted degradation of dye pollutants. V. self-photosensitized oxidative transformation of Rhodamine B under visible light irradiation in aqueous TiO2 dispersions, J. Phys. Chem. B, 102, 5845, 10.1021/jp980922c
Zhang, 2008, Investigation of the roles of active oxygen species in photodegradation of azo dye AO7 in TiO2 photocatalysis illuminated by microwave electrodeless lamp, J. Photochem. Photobiol. A, 199, 311, 10.1016/j.jphotochem.2008.06.009
Wang, 2003, A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte, Nat. Mater., 2, 402, 10.1038/nmat904
Zhu, 2008, Synthesis and characterization of polythiophene/titanium dioxide composites, React. Funct. Polym., 68, 1492, 10.1016/j.reactfunctpolym.2008.07.008
Li, 2008, Characterization of natural sphalerite as a novel visible light-driven photocatalyst, Sol. Energy Mater. Sol. Cells, 92, 953, 10.1016/j.solmat.2008.02.023
Xu, 2010, Visible light induced photocatalytic degradation of methyl orange by polythiophene/TiO2 composite particles, Water Air Soil Pollut., 213, 151, 10.1007/s11270-010-0374-4
Zhu, 2010, Photocatalytic degradation of methyl orange using polythiophene/titanium dioxide, React. Funct. Polym., 70, 282, 10.1016/j.reactfunctpolym.2010.01.007
Wang, 2013, One-dimensional nanostructured polyaniline: syntheses, morphology controlling, formation mechanisms, new features, and applications, Adv. Polym. Technol., 32, 323, 10.1002/adv.21283
Cheng, 2012, Synthesis of polythiophene nanoparticles by microemulsion polymerization for photocatalysis, Adv. Mater. Res., 399–401, 1312
Liang, 2009, Visible-induced photocatalytic reactivity of polymer–sensitized titania nanotube films, Appl. Catal. B, 86, 8, 10.1016/j.apcatb.2008.07.015
Strandwitz, 2010, In situ photopolymerization of pyrrole in mesoporous TiO2, Langmuir, 26, 5319, 10.1021/la100913e
Weng, 2008, Oxidative polymerization of pyrrole photocatalyzed by TiO2 nanoparticles and interactions in the composites, J. Appl. Polym. Sci., 110, 109, 10.1002/app.28636
Xu, 2011, Structure and photocatalytic activity of polythiophene/TiO2 composite particles prepared by photoinduced polymerization, Chin. J. Catal., 32, 536, 10.1016/S1872-2067(10)60207-0
Fu, 2008, Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C60, Environ. Sci. Technol., 42, 8064, 10.1021/es801484x
Khatamian, 2014, Preparation, characterization and photocatalytic properties of polythiophene-sensitized zinc oxide hybrid nanocomposites, Mater. Sci. Semicond. Process., 26, 540, 10.1016/j.mssp.2014.04.038
Lv, 2015, Improving the visible light photocatalytic activities of Bi25FeO40/MIL-101/PTH via polythiophene wrapping, J. Environ. Chem. Eng., 3, 1003, 10.1016/j.jece.2014.11.009
Motaung, 2009, Thermal-induced changes on the properties of spin-coated P3HT:C60 thin films for solar cell applications, Sol. Energy Mater. Sol. Cells, 93, 1674, 10.1016/j.solmat.2009.05.016
Muktha, 2007, Synthesis and photocatalytic activity of poly(3-hexylthiophene)/TiO2 composites, J. Solid State Chem., 180, 2986, 10.1016/j.jssc.2007.07.017
Wang, 2009, Characterization and photocatalytic activity of poly(3-hexylthiophene)-modified TiO2 for degradation of methyl orange under visible light, J. Hazard. Mater., 169, 546, 10.1016/j.jhazmat.2009.03.135
Zhu, 2010, Photocatalytic activity of poly(3-hexylthiophene)/titanium dioxide composites for degrading methyl orange, Sol. Energy Mater. Sol. Cells, 94, 1658, 10.1016/j.solmat.2010.05.025
Xu, 2012, The influence of the oxidation degree of poly(3-hexylthiophene) on the photocatalytic activity of poly(3-hexylthiophene)/TiO2 composites, Sol. Energy Mater. Sol. Cells, 96, 286, 10.1016/j.solmat.2011.09.022
Song, 2007, Photodegradation of phenol in a polymer-modified TiO2 semiconductor particulate system under the irradiation of visible light, Catal. Commun., 8, 429, 10.1016/j.catcom.2006.07.001
Qiu, 2008, Photocatalytic activity of polymer-modified ZnO under visible light irradiation, J. Hazard. Mater., 156, 80, 10.1016/j.jhazmat.2007.11.114
Ali, 2013, Structure and properties of solid-state synthesized poly(3,4-propylenedioxythiophene)/nano-ZnO composite, Prog. Nat. Sci. Mater. Int., 23, 524, 10.1016/j.pnsc.2013.11.002
Fu, 2012, The synthesis and properties of ZnO–graphene nano hybrid for photodegradation of organic pollutant in water, Mater. Chem. Phys., 132, 673, 10.1016/j.matchemphys.2011.11.085
Abdiryim, 2012, Solid-state synthesis and characterization of polyaniline/nano-TiO2 composite, J. Appl. Polym. Sci., 126, 697, 10.1002/app.36857
Wang, 2012, Graphene oxide–polythiophene hybrid with broad-band absorption and photocatalytic properties, J. Phys. Chem. Lett., 3, 2332, 10.1021/jz300930u
Wang, 2014, Simple synthesis and photoelectrochemical characterizations of polythiophene/Pd/TiO2 composite microspheres, ACS Appl. Mater. Interface, 6, 20197, 10.1021/am505720a
Chandra, 2015, An enhanced visible light active rutile titania-copper/polythiophene nanohybrid material for the degradation of rhodamine B dye, Mater. Sci. Semicond. Process., 30, 672, 10.1016/j.mssp.2014.09.009
Boutoumi, 2013, Synthesis and characterization of TiO2-montmorillonite/polythiophene-SDS nanocomposites: application in the sonophotocatalytic degradation of rhodamine 6G, Appl. Clay Sci., 80–81, 56, 10.1016/j.clay.2013.06.005
Pirola, 2003, Degradation of organic water pollutants through sonophotocatalysis in the presence of TiO2, Ultrason. Sonochem., 10, 247, 10.1016/S1350-4177(03)00090-7
Matsunaga, 2006, Photochemical sterilization of microbial cells by semiconductor powders, FEMS Microbiol. Lett., 29, 211, 10.1111/j.1574-6968.1985.tb00864.x
Akhavan, 2009, Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation, J. Phys. Chem. C, 113, 20214, 10.1021/jp906325q
Čík, 2006, Inactivation of bacteria G+-S. aureus and G−-E. coli by phototoxic polythiophene incorporated in ZSM-5 zeolite, Chemosphere, 63, 1419, 10.1016/j.chemosphere.2005.10.017
Shang, 2011, Effective photocatalytic disinfection of E. coli and S. aureus using polythiophene/MnO2 nanocomposite photocatalyst under solar light irradiation, Desalination, 278, 173, 10.1016/j.desal.2011.05.017
Shang, 2013, Poly-(3-thiopheneacetic acid) coated Fe3O4@LDHs magnetic nanospheres as a photocatalyst for the efficient photocatalytic disinfection of pathogenic bacteria under solar light irradiation, New J. Chem., 37, 2509, 10.1039/c3nj00148b
Wen, 2000, Photocatalytic properties of poly(3-octylthiophene-2,5-diyl) film blended with sensitizer for the degradation of iprobenfos fungicide, J. Photochem. Photobiol. A, 137, 45, 10.1016/S1010-6030(00)00353-1
Wen, 2000, Visible light-induced catalytic degradation of iprobenfos fungicide by poly(3-octylthiophene-2,5-diyl) film, J. Photochem. Photobiol. A, 133, 59, 10.1016/S1010-6030(00)00206-9