Polystyrene nanoparticle-templated hollow titania nanosphere monolayers as ordered scaffolds

Journal of Materials Chemistry C - Tập 6 Số 10 - Trang 2502-2508
Valentina Robbiano1,2, Giuseppe M. Paternò1,2, Giovanni Cotella1,2, Tiziana Fiore3,4,5,6, M. Dianetti7,8,9,4,10, Michelangelo Scopelliti3,4,5,6, Francesca Brunetti7,8,9,4,10, Bruno Pignataro11,3,4,5,6, Franco Cacialli1,2
1Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, UK
2University College London
3Dipartimento di Fisica e Chimica (DiFC)
4Italy
5Palermo
6Università Degli Studi Di Palermo
700133 Rome
8CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, via del Politecnico 1, 00133 Rome, Italy
9Department of Electronic Engineering
10University of Rome Tor Vergata
11Aten Center

Tóm tắt

A novel class of ordered mesoporous titania scaffolds prepared via colloidal lithography is attractive for perovskite-based solar cells thanks to the increased light-trapping inside the perovskite layer induced by the feedback structure and to the improved perovskite film.

Từ khóa


Tài liệu tham khảo

Scanlon, 2013, Nat. Mater., 12, 798, 10.1038/nmat3697

O'Regan, 1991, Nature, 353, 737, 10.1038/353737a0

Lee, 2012, Science, 338, 643, 10.1126/science.1228604

Fujishima, 1972, Nature, 238, 37, 10.1038/238037a0

Bi, 2013, RSC Adv., 3, 18762, 10.1039/c3ra43228a

Yu, 2016, J. Power Sources, 325, 534, 10.1016/j.jpowsour.2016.05.060

Cheng, 2016, J. Power Sources, 321, 71, 10.1016/j.jpowsour.2016.04.124

Guarnera, 2015, J. Phys. Chem. Lett., 6, 432, 10.1021/jz502703p

He, 2014, J. Mater. Chem. A, 2, 5994, 10.1039/C3TA14160H

Horantner, 2015, Energy Environ. Sci., 8, 2041, 10.1039/C5EE01169H

Chen, 2015, Adv. Sci., 2, 1500105, 10.1002/advs.201500105

Iida, 1998, Chem. Mater., 10, 3780, 10.1021/cm9805626

Wu, 2011, J. Hazard. Mater., 194, 338, 10.1016/j.jhazmat.2011.07.110

Gong, 2009, Chem. Commun., 4690, 10.1039/B908932B

Collins, 2003, J. Mater. Chem., 13, 1112, 10.1039/b301183f

Nakashima, 2003, J. Am. Chem. Soc., 125, 6386, 10.1021/ja034954b

Yun, 2016, J. Mater. Chem. A, 4, 1306, 10.1039/C5TA08250A

Brown, 2011, Org. Electron., 12, 623, 10.1016/j.orgel.2011.01.015

Moon, 2011, ACS Nano, 5, 8600, 10.1021/nn202733f

Robbiano, 2013, Adv. Opt. Mater., 1, 389, 10.1002/adom.201200060

Peterson, 2001, Macromol. Chem. Phys., 202, 775, 10.1002/1521-3935(20010301)202:6<775::AID-MACP775>3.0.CO;2-G

Belardini, 2014, Adv. Opt. Mater., 2, 208, 10.1002/adom.201300385

Choi, 2014, Nano Lett., 14, 127, 10.1021/nl403514x

Semonin, 2016, J. Phys. Lett., 7, 3510

Burlakov, 2014, Appl. Phys. Lett., 104, 091602, 10.1063/1.4867263

Mastroianni, 2015, Nanoscale, 7, 19653, 10.1039/C5NR05308K

Green, 2014, Nat. Photonics, 8, 506, 10.1038/nphoton.2014.134

Burschka, 2013, Nature, 499, 316, 10.1038/nature12340

Qin, 2015, Small, 11, 5533, 10.1002/smll.201501460

Snaith, 2014, J. Phys. Lett., 5, 1511

Unger, 2014, Energy Environ. Sci., 7, 3690, 10.1039/C4EE02465F

Miyano, 2016, Acc. Chem. Res., 49, 303, 10.1021/acs.accounts.5b00436

Listorti, 2015, J. Phys. Chem. Lett., 6, 1628, 10.1021/acs.jpclett.5b00483