Polyphosphates as an energy source for growth of Saccharomyces cerevisiae
Tóm tắt
Cells of the yeast Saccharomyces cerevisiae with a low content of polyphosphates (polyP) are characterized by disturbance of growth in medium with 0.5% glucose. The parent strain with polyP level reduced by phosphate starvation had a longer lag phase. The growth rate of strains with genetically determined low content of polyP due to their enhanced hydrolysis (CRN/pMB1_PPN1 Sc is a superproducer of exopolyphosphatase PPN1) or reduced synthesis (the BY4741 vma2Δ mutant with impaired vacuolar membrane energization) was lower in the exponential phase. The growth of cells with high content of polyP was accompanied by polyP consumption. In cells of strains with low content of polyP, CRN/pMB1_PPN1 Sc and BY4741 vma2Δ, their consumption was insignificant. These findings provide more evidence indicating the use of polyP as an extra energy source for maintaining high growth rate.
Tài liệu tham khảo
Kornberg, A., Rao, N. N., and Ault-Riche, D. (1999) Annu. Rev. Biochem., 68, 89–125.
Kulaev, I. S., Vagabov, V. M., and Kulakovskaya, T. V. (2004) The Biochemistry of Inorganic Polyphosphate, Wiley.
Rao, N. N., Gomez-Garcia, M. R., and Kornberg, A. (2009) Ann. Rev. Biochem., 78, 605–647.
Kalebina, T. S., Egorov, S. N., Arbatsky, N. P., Bezsonov, E. E., Gorkovsky, A. A., and Kulaev, I. S. (2008) Dokl. Akad. Nauk, 420, 695–698.
Hughes, D. E., and Muhammed, A. (1962) in Proc. Acids Ribonucleiques et Polyphosphates. Structure, Synthese et Fonction, CNRS International Colloquion, Paris, pp. 591–602.
Nesmeyanova, M. A. (2000) Biochemistry (Moscow), 65, 309–314.
Vagabov, V. M., Trilisenko, L. V., Shchipanova, I. N., Sibel’dina, L. A., and Kulaev, I. S. (1998) Mikrobiologiya, 67, 193–198.
Vagabov, V. M., Trilisenko, L. V., and Kulaev, I. S. (2000) Biochemistry (Moscow), 65, 349–354.
Milgrom, E., Diab, H., Middleton, F., and Kane, P. M. (2007) J. Biol. Chem., 282, 7125–7136.
Tomashevsky, A. A., Ryazanova, L. P., Kulakovskaya, T. V., and Kulaev, I. S. (2010) Biochemistry (Moscow), 75, 1052–1054.
Trilisenko, L., Tomashevsky, A., Kulakovskaya, T., and Kulaev, I. (2013) Folia Microbiol., 58, 437–441.
Hothorn, M., Neumann, H., Lenherr, E. D., Wehner, M., Rybin, V., Hassa, P. O., Uttenweiler, A., Reinhardt, M., Schmidt, A., Seiler, J., Ladumer, A. G., Hermann, C., Scheffzek, K., and Mayer, A. (2009) Science, 324, 513–516.
El’darov, M. A., Baranov, M. V., Dumina, M. V., Zhgun, A. A., Andreeva, N. A., Trilisenko, L. V., Kulakovskaya, T. V., Ryazanova, L. P., and Kulaev, I. S. (2013) Biochemistry (Moscow), 78, 946–953.
Sethuraman, A., Rao, N. N., and Kornberg, A. (2001) Proc. Natl. Acad. Sci. USA, 98, 8542–8547.
Heinonen, Y. K., and Lahti, R. Y. (1981) Anal. Biochem., 113, 313–317.
Hall, B. G., Acar, H., Nandipati, A., and Barlow, M. (2013) Mol. Biol. Evol., 31, 232–238.
Trilisenko, L. V., Andreeva, N. A., Kulakovskaya, T. V., Vagabov, V. M., and Kulaev, I. S. (2003) Biochemistry (Moscow), 68, 577–581.