Polyols và polyurêtan từ nguồn tái tạo: quá khứ, hiện tại và tương lai—phần 2: nguyên liệu có nguồn gốc từ thực vật

Springer Science and Business Media LLC - Tập 19 - Trang 361-375 - 2022
Ritesh S. Malani1, Vinod C. Malshe2, Bhaskar Narayan Thorat3
1Petrochemical and Energy Engineering Department, Institute of Chemical Technology Mumbai – IndianOil Odisha Campus, Bhubaneswar, India
2Mumbai, India
3Chemical Engineering Department, Institute of Chemical Technology Mumbai – IndianOil Odisha Campus, Bhubaneswar, India

Tóm tắt

Polyol cơ bản là hợp chất chứa nhiều nhóm hydroxyl phản ứng và là một trong những thành phần chính trong việc sản xuất polyurethane và bọt polyurethane. Truyền thống, các polyol được thu được từ nhiên liệu hóa thạch. Sự hạn chế về nguồn cung nhiên liệu hóa thạch và nhu cầu ngày càng tăng của các loại polymer bao gồm PU đã buộc cộng đồng khoa học phải khám phá các nguồn thay thế khả thi để thu được polyol. Nhằm giảm sự phụ thuộc của polyol vào nhiên liệu hóa thạch, các polyol tái tạo đã trở nên quan trọng đáng kể trong vài thập kỷ qua. Nhiều nguồn sinh khối và nguồn tái tạo đã được khám phá để thu được polyol. Bài tổng quan hiện tại, là sự tiếp nối của công trình trước đó của chúng tôi, làm nổi bật nhiều nguyên liệu thô khác có nguồn gốc từ thực vật để thu được polyol tái tạo cùng với các phương pháp tương ứng. Bài viết cũng cố gắng tạo ra một kết nối mạnh mẽ giữa nguyên liệu đầu vào để sản xuất polyol, các biến đổi hóa học được áp dụng và các thuộc tính của polyol cũng như PU cuối cùng. Phân tích toàn diện về polyol tái tạo và PU tương ứng sẽ hỗ trợ các nhà nghiên cứu trong việc sản xuất polyol tái tạo có tính khả thi thương mại nhằm đáp ứng nhu cầu ngày càng tăng.

Từ khóa

#polyol #polyurethane #nguồn tái tạo #nguyên liệu thực vật #sinh khối

Tài liệu tham khảo

Malani, RS, Malshe, VC, Thorat, BN, “Polyols and Polyurethanes from Renewable Sources: Past, Present and Future—Part 1: Vegetable Oils and Lignocellulosic Biomass.” J. Coat. Technol. Res. (2021) Satyanarayana, KG, Arizaga, GG, Wypych, F, “Biodegradable Composites Based on Lignocellulosic Fibers—An Overview.” Prog. Polym. Sci., 34 (9) 982–1021 (2009) Gama, NV, Ferreira, A, Barros-Timmons, A, “Polyurethane Foams: Past, Present, and Future.” Materials (Basel), 11 (10) 1841 (2018) Nohra, B, Candy, L, Blanco, JF, Guerin, C, Raoul, Y, Mouloungui, Z, “From Petrochemical Polyurethanes to Biobased Polyhydroxyurethanes.” Macromolecules, 46 (10) 3771–3792 (2013) Lu, MY, Surányi, A, Viskolcz, B, Fiser, B, “Molecular Design of Sugar-Based Polyurethanes.” Croat. Chem. Acta, 91 (3) 299–308 (2018) Manzano, VE, Kolender, AA, Varela, O, In: Goyanes, S, D’Accorso, N (eds.) Industrial Applications of Renewable Biomass Products, pp. 1–43. Springer (2017) Venkatesan, J, Bhatnagar, I, Manivasagan, P, Kang, KH, Kim, SK, “Alginate Composites for Bone Tissue Engineering: A Review.” Int. J. Biol. Macromol., 72 269–281 (2015) Friendman, R, In: Fraser-Reid, BO, Tatsuta, K, Thiem, J (eds.) Glycoscience, pp. 841–856. Springer, Berlin (2008) Ferraz, HC, Alves, TLM, Borges, CP, In: Bhattacharyya, D, Butterfield, DA (eds.) New Insights into Membrane Science and Technology: Polymeric and Biofunctional Membranes (Volume 8), pp. 241–261. Elsevier (2003) Shogren, R, Wood, D, Orts, W, Glenn, G, “Plant-Based Materials and Transitioning to a Circular Economy.” Sustain. Prod. Consum., 19 194–215 (2019) Furtwengler, P, Avérous, L, “Renewable Polyols for Advanced Polyurethane Foams from Diverse Biomass Resources.” Polym. Chem., 9 (32) 4258–4287 (2018) Malani, RS, Goyal, A, Moholkar, VS, In: Agrawal, AK, Agarwal, RA, Gupta, T, Gurjar, BR, (eds.) Biofuels, pp. 103–135. Springer, Singapore (2017) Hatakeyama, H, Nakayachi, A, Hatakeyama, T, “Thermal and Mechanical Properties of Polyurethane-Based Geocomposites Derived from Lignin and Molasses.” Compos. Part A Appl. Sci. Manuf., 36 (5) 698–704 (2005) Solanki, A, Mehta, J, Thakore, S, “Structure–Property Relationships and Biocompatibility of Carbohydrate Crosslinked Polyurethanes.” Carbohydr. Polym., 110 338–344 (2014) Solanki, AR, Kamath, BV, Thakore, S, “Carbohydrate Crosslinked Biocompatible Polyurethanes: Synthesis, Characterization, and Drug Delivery Studies.” J. Appl. Polym. Sci., 32 (8) 42223 (2015) Xu, C, Yepez, G, Wei, Z, Liu, F, Bugarin, A, Hong, Y, “Synthesis and Characterization of Conductive, Biodegradable, Elastomeric Polyurethanes for Biomedical Applications.” J. Biomed. Mater. Res. Part A, 104 (9) 2305–2314 (2016) Alves, P, Ferreira, P, Gil, MH, In: Cavaco, L, Melo, J (eds.) Polyurethane: Properties, Processing, and Applications, pp. 1–25. Nova Science Publishers, New York (2012) Cherng, JY, Hou, TY, Shih, MF, Talsma, H, Hennink, WE, “Polyurethane-Based Drug Delivery Systems.” Int. J. Pharm., 450 (1–2) 145–162 (2013) Lowinger, MB, Barrett, SE, Zhang, F, Williams, RO, “Sustained Release Drug Delivery Applications of Polyurethanes.” Pharmaceutics, 10 (2) 55 (2018) Lee, YY, Wu, KCW, “Conversion and Kinetics Study of Fructose-to-5-Hydroxymethylfurfural (HMF) Using Sulfonic and Ionic Liquid Groups Bi-functionalized Mesoporous Silica Nanoparticles as Recyclable Solid Catalysts in DMSO Systems.” Phys. Chem. Chem. Phys., 14 (40) 13914–13917 (2012) Zhang, Q, Liu, X, Yang, T, Pu, Q, Yue, C, Zhang, S, Zhang, Y, “Catalytic Transfer of Fructose to 5-Hydroxymethylfurfural Over Bimetal Oxide Catalysts.” Int. J. Chem. Eng., 3890298 1–6 (2019) Fukuoka, A, Dhepe, PL, “Catalytic Conversion of Cellulose into Sugar Alcohols.” Angew. Chem. Int. Ed., 45 (31) 5161–5163 (2006) Van de Vyver, S, Geboers, J, Dusselier, M, Schepers, H, Vosch, T, Zhang, L, Van Tendeloo, G, Jacobs, PA, Sels, BF, “Selective Bifunctional Catalytic Conversion of Cellulose Over Reshaped Ni Particles at the Tip of Carbon Nanofibers.” ChemSusChem, 3 (6) 698–701 (2010) García, B, Moreno, J, Morales, G, Melero, JA, Iglesias, J, “Production of Sorbitol via Catalytic Transfer Hydrogenation of Glucose.” Appl. Sci., 10 (5) 1843 (2020) Cao, D, Yu, B, Zhang, S, Cui, L, Zhang, J, Cai, W, “Isosorbide Production from Sorbitol Over Porous Zirconium Phosphate Catalyst.” Appl. Catal. A Gen., 528 59–66 (2016) Ginés-Molina, MJ, Moreno-Tost, R, Santamaría-González, J, Maireles-Torres, P, “Dehydration of Sorbitol to Isosorbide Over Sulfonic Acid Resins Under Solvent-Free Conditions.” Appl. Catal. A Gen., 537 66–73 (2017) Kamaruzaman, MR, Jiang, XX, De Hu, X, Chin, SY, “High Yield of Isosorbide Production from Sorbitol Dehydration Catalysed by Amberlyst 36 Under Mild Condition.” Chem. Eng. J., 388 124186 (2020) Zia, F, Zia, KM, Zuber, M, Kamal, S, Aslam, N, “Starch Based Polyurethanes: A Critical Review Updating Recent Literature.” Carbohydr. Polym., 134 784–798 (2015) Gandini, A, Lacerda, TM, Carvalho, AJ, Trovatti, E, “Progress of Polymers from Renewable Resources: Furans, Vegetable Oils, and Polysaccharides.” Chem. Rev., 116 (3) 1637–1669 (2016) Ermolovich, OA, “Structure and Properties of Biodegradable Film Materials Based on Compatibilized Polyethylene/Starch Compositions.” Polim. Zhurnal, 27 (3) 174–180 (2005) Finkenstadt, VL, Tisserat, B, “Poly(Lactic Acid) and Osage Orange Woodfiber Composites for Agricultural Mulch Films.” Ind. Crops Prod., 31 316–320 (2010) Nawab, A, Alam, F, Haq, MA, Lutfi, Z, Hasnain, A, “Mango Kernel Starch-Gum Composite Films: Physical, Mechanical and Barrier Properties.” Int. J. Biol. Macromol., 98 869–876 (2017) Nikje, MMA, Garmarudi, AB, “Starch, Sucrose, and Rezol® IL800 as Density Modifiers for Polyurethane Rigid Foams Formulated by Recycled Polyol.” Polym. Plast. Technol. Eng., 45 (10) 1101–1107 (2006) Santayanon, R, Wootthikanokkhan, J, “Modification of Cassava Starch By Using Propionic Anhydride and Properties of the Starch–Blended Polyesterpolyurethane.” Carbohydr. Polym., 51 17–24 (2003) Najemi, L, Jeanmaire, T, Zerroukhi, A, Raihane, M, “Isocyanate-Free Route to Starch–Graft-Polycaprolactone via Carbonyldiimidazole (CDI)-Mediated Endgroup Conversion.” Starch/Stärke, 62 90–101 (2010) Negahdar, L, Hausoul, PJ, Palkovits, S, Palkovits, R, “Direct Cleavage of Sorbitol from Oligosaccharides via a Sequential Hydrogenation-Hydrolysis Pathway.” Appl. Catal. B Environ., 166 460–464 (2015) Ha, SK, Broecker, HC, “The Crosslinking of Polyurethane Incorporated with Starch Granules and Their Rheological Properties: Influence of Starch Contents and Reaction Conditions.” Macromol. Mater. Eng., 288 569–577 (2002) Da Róz, AL, Curvelo, AAS, Gandini, A, “Preparation and Characterization of Cross-Linked Starch Polyurethanes.” Carbohydr. Polym., 77 526–529 (2009) Barikani, M, Mohammadi, M, “Synthesis and Characterization of Starch-Modified Polyurethane.” Carbohydr. Polym., 68 773–780 (2007) Wilpiszewska, K, Spychaj, T, “Chemical Modification of Starch by Hexamethylene Diisocyanate Derivatives.” Carbohydr. Polym., 70 334–340 (2007) Cao, X, Zhang, L, “Miscibility and Properties of Polyurethane/Benzyl Starch Semi Interpenetrating Polymer Networks.” J. Polym. Sci. B Polym. Phys., 43 603–615 (2005) Lammers, G, Stamhuis, EJ, Beenackers, AACM, “Kinetics of the Hydroxypropylation of Potato Starch in Aqueous Solution.” Ind. Eng. Chem. Res., 32 (5) 835–842 (1993) Saberi, B, Chockchaisawasdee, S, Golding, JB, Scarlett, CJ, Stathopoulos, CE, “Physical and Mechanical Properties of a New Edible Film Made of Pea Starch and Guar Gum as Affected by Glycols, Sugars and Polyols.” Int. J. Biol. Macromol., 104 345–359 (2017) Blanc, B, Bourrel, A, Gallezot, P, Haas, T, Taylor, P, “Starch-Derived Polyols for Polymer Technologies: Preparation by Hydrogenolysis on Metal Catalysts.” Green Chem., 2 (2) 89–91 (2000) Kang, SM, Kang, MS, Kwon, SH, Park, H, Kim, BK, “Effects of Chain Extender in Biodegradable Polyurethane Foams.” J. Polym. Eng., 34 (6) 555–559 (2014) Alperin, C, Zandstra, PW, Woodhouse, KA, “Polyurethane Films Seeded with Embryonic Stem Cell-Derived Cardiomyocytes for Use in Cardiac Tissue Engineering Applications.” Biomaterials, 26 (35) 7377–7386 (2005) Schulz, GE, Schirmer, RH, Principles of Protein Structure. Springer, Berlin (2013) Li, Y, Luo, X, Hu, S, Bio-based Polyols and Polyurethanes. Springer, Berlin (2015) Wool, R, Sun, XS, Bio-based Polymers and Composites. Elsevier, Amsterdam (2011) Narayan, R, Hablot, E, Graiver, D, Sendijarevic, V, “Soy Meal-Based Polyols for Rigid Polyurethane Foams.” PU Mag., 11 (3) 2 (2014) Kumar, S, Hablot, E, Moscoso, JLG, Obeid, W, Hatcher, PG, DuQuette, BM, Graiver, D, Narayan, R, Balan, V, “Polyurethanes Preparation Using Proteins Obtained from Microalgae.” J. Mater. Sci., 49 (22) 7824–7833 (2014) Yu, F, Le, Z, Chen, P, Liu, Y, Lin, X, Ruan, R, In: Adney, WS, McMillan, JD, Mielenz, J, Klasson, KT (eds.) Biotechnology for Fuels and Chemicals ABAB Symposium (Part A Enzyme Engineering and Biotechnology), pp. 753–761. Springer (2007) Prakash, PAGN, Gupta, N, “Therapeutic Uses of Ocimum sanctum Linn (Tulsi) with a Note on Eugenol and Its Pharmacological Actions: A Short Review.” Indian J. Physiol. Pharmacol., 49 (2) 125 (2005) Faye, I, Decostanzi, M, Ecochard, Y, Caillol, S, “Eugenol Bio-based Epoxy Thermosets: From Cloves to Applied Materials.” Green Chem., 19 (21) 5236–5242 (2017) Mahajan, MS, Mahulikar, PP, Gite, VV, “Eugenol Based Renewable Polyols for Development of 2K Anticorrosive Polyurethane Coatings.” Prog. Org. Coat., 148 105826 (2020) Liu, K, Madbouly, SA, Kessler, MR, “Biorenewable Thermosetting Copolymer Based on Soybean Oil and Eugenol.” Eur. Polym. J., 69 16–28 (2015) Liu, T, Hao, C, Wang, L, Li, Y, Liu, W, Xin, J, Zhang, J, “Eugenol-Derived Biobased Epoxy: Shape Memory, Repairing, and Recyclability.” Macromolecules, 50 (21) 8588–8597 (2017) Miao, JT, Yuan, L, Guan, Q, Liang, G, Gu, A, “Water-Phase Synthesis of a Biobased Allyl Compound for Building UV-Curable Flexible Thiol–Ene Polymer Networks with High Mechanical Strength and Transparency.” ACS Sustain. Chem. Eng., 6 (6) 7902–7909 (2018) Caillol, S, “Cardanol: A Promising Building Block for Biobased Polymers and Additives.” Curr. Opin. Green Sustain. Chem., 14 26–32 (2018) Ladmiral, V, Jeannin, R, Lizarazu, KF, Lai-Kee-Him, J, Bron, P, Lacroix-Desmazes, P, Caillol, S, “Aromatic Biobased Polymer Latex from Cardanol.” Eur. Polym. J., 93 785–794 (2017) Suresh, KI, “Rigid Polyurethane Foams from Cardanol: Synthesis, Structural Characterization, and Evaluation of Polyol and Foam Properties.” ACS Sustain. Chem. Eng., 1 (2) 232–242 (2013) Wang, H, Zhou, Q, “Synthesis of Cardanol-Based Polyols via Thiol-ene/Thiol-epoxy Dual Click-Reactions and Thermosetting Polyurethanes Therefrom.” ACS Sustain. Chem. Eng., 6 (9) 12088–12095 (2018) Rahobinirina, AI, Rakotondramanga, MF, Berlioz-Barbier, A, Métay, E, Ramanandraibe, V, Lemaire, M, “Valorization of Madagascar’s CNSL via the Synthesis of One Advanced Intermediate (3-Pentadecylcyclohexanone).” Tetrahedron Lett., 58 (22) 2284–2289 (2017) Kathalewar, M, Sabnis, A, D’Melo, D, “Polyurethane Coatings Prepared from CNSL Based Polyols: Synthesis, Characterization and Properties.” Prog. Org. Coat., 77 616–626 (2014) Nanclares, J, Petrović, ZS, Javni, I, Ionescu, M, Jaramillo, F, “Segmented Polyurethane Elastomers by Nonisocyanate Route.” J. Appl. Polym. Sci., 132 (36) 42492 (2015) Li, S, Sun, M, Liu, C, Zhang, X, Li, J, Wang, W, Zhang, B, “Synthesis and Application of a Novel 5-Hydroxymethyl Resorcinol Diglycidyl Ether-Terminated Polyurethane.” J. Macromol. Sci. Part A, 57 (5) 332–343 (2020) Gandhi, TS, Patel, MR, Dholakiya, BZ, “Synthesis and Characterization of Different Types of Epoxide-based Mannich Polyols from Low-cost Cashew Nut Shell Liquid.” Res. Chem. Intermed., 40 (3) 1223–1232 (2014) Voirin, C, Caillol, S, Sadavarte, NV, Tawade, BV, Boutevin, B, Wadgaonkar, PP, “Functionalization of Cardanol: Towards Biobased Polymers and Additives.” Polym. Chem., 5 (9) 3142–3162 (2014) Uyama, H, “Functional Polymers from Renewable Plant Oils.” Polym. J., 50 (11) 1003–1011 (2018) Janardhan, R, Vijayabaskar, V, Reddy, BSR, “Synthesis and Characterisation of Sulfonated Dimeric Malenised Soya Fatty Acid: A Novel Gemini Surfactant.” J. Surf. Sci. Technol., 28 (3–4) 163–178 (2012) Mathers, RT, Meier, MA, Green Polymerization Methods: Renewable Starting Materials, Catalysis and Waste Reduction. Wiley, New York (2011) Wilbon, PA, Chu, F, Tang, C, “Progress in Renewable Polymers from Natural Terpenes, Terpenoids, and Rosin.” Macromol. Rapid Commun., 34 (1) 8–37 (2013) Mewalal, R, Rai, DK, Kainer, D, Chen, F, Külheim, C, Peter, GF, Tuskan, GA, “Plant-derived Terpenes: A Feedstock for Specialty Biofuels.” Trends Biotechnol., 35 (3) 227–240 (2017) Belgacem, MN, Gandini, A (eds.) Monomers, Polymers and Composites from Renewable Resources, pp. 17–38. Elsevier (2008) Wu, GM, Kong, ZW, Huang, H, Chen, J, Chu, FX, “Synthesis, Characterization, and Properties of Polyols from Hydrogenated Terpinene–Maleic Ester Type Epoxy Resin.” J. Appl. Polym. Sci., 113 (5) 2894–2901 (2009) Kobayashi, S, Lu, C, Hoye, TR, Hillmyer, MA, “Controlled Polymerization of a Cyclic Diene Prepared from the Ring-Closing Metathesis of a Naturally Occurring Monoterpene.” J. Am. Chem. Soc., 131 (23) 7960–7961 (2009) Lowe, JR, Martello, MT, Tolman, WB, Hillmyer, MA, “Functional Biorenewable Polyesters from Carvone-Derived Lactones.” Polym. Chem., 2 (3) 702–708 (2011) Hossain, MA, Lian, CLY, Islam, MAAA, Sheikh, MC, Ching, JJ, Voon, LH, “Alumina-Supported Cu (II), Co (II), and Fe (II) Complexes as Catalyst for Esterification of Biomass-Derived Levulinic Acid with Trimethylolpropane (TMP) and Pentaerythritol (PE) and Upgrading via Hydrogenation.” BioResources, 13 (3) 5512–5533 (2018) Nemr, K, Müller, JE, Joo, JC, Gawand, P, Choudhary, R, Mendonca, B, Lu, S, Yu, X, Yakunin, AF, Mahadevan, R, “Engineering a Short, Aldolase-Based Pathway for (R)-1, 3-Butanediol Production in Escherichia coli.” Metab. Eng., 48 13–24 (2018)