Polyol‐Mediated Synthesis of Zinc Oxide Nanorods and Nanocomposites with Poly(methyl methacrylate)

Journal of Nanomaterials - Tập 2012 Số 1 - 2012
Alojz Anžlovar1,2, Zorica Crnjak Orel1,2, Ksenija Kogej3, Majda Žigon1,2
1Laboratory for Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana
2Laboratory for Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
3Chair of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, AškerŸeva 5, 1000 Ljubljana, Slovenia

Tóm tắt

ZnO nanorods (length 30–150 nm) were synthesized in di(ethylene glycol) using Zn(CH3COO)2 as a precursor and para‐toluene sulphonic acid, p‐TSA, as an end‐capping agent. Increasing the concentration of p‐TSA above 0.1 M causes the reduction of the ZnO length. Nanocomposites with poly(methyl methacrylate) were prepared using unmodified nanorods. They enhanced the UV absorption of nanocomposites (~98%) at low ZnO concentrations (0.05–0.1 wt.%), while visible light transparency was high. At concentrations of 1 wt.% and above, nanorods enhanced the thermal stability of nanocomposites. At low concentrations (0.05–0.1 wt.%), they increased the storage modulus of material and shifted Tg towards higher temperatures as shown by dynamic mechanical analysis, DMA, while at higher concentrations (1.0 wt.%) this effect was deteriorated. DMA also showed that spherical ZnO particles have a more pronounced effect on the storage modulus and Tg than nanorods.

Từ khóa


Tài liệu tham khảo

10.1039/b816543b

10.1021/jp060133s

10.1016/j.ceramint.2006.09.018

10.1021/ja036811v

10.1002/smll.200800617

10.1002/adma.200800202

10.1166/jnn.2007.742

10.1039/b602084d

10.1111/j.1551‐2916.2008.02870.x

10.1126/science.1060367

10.1002/anie.200602429

10.1021/jp0726384

10.1021/j100192a066

10.1021/jp060133s

10.1016/j.apsusc.2008.12.037

10.1021/cm020077h

10.1021/cg050345z

10.1021/cg8008078

10.1038/nmat1014

10.1016/j.mser.2004.09.001

10.1023/A:1020656620050

10.1155/2011/603098

10.1016/j.ceramint.2006.08.003

10.1002/1521-3773(20020402)41:7<1188::AID-ANIE1188>3.0.CO;2-5

10.1557/JMR.1995.0077

10.1016/S0254‐0584(02)00492‐3

10.1023/A:1020763402390

10.1016/j.jeurceramsoc.2006.04.131

10.1166/jnn.2008.165

10.1016/j.eurpolymj.2010.03.010

10.1002/marc.200500870

10.1002/adma.200700736

10.1016/j.materresbull.2011.06.037

10.3144/expresspolymlett.2011.59

10.1063/1.1699591

10.1016/S0025-5408(01)00819-4

10.1016/j.ceramint.2008.06.012

10.1016/j.matlet.2008.12.035

10.1016/S0022‐0248(99)00076‐7

10.1016/j.jcrysgro.2009.06.028

10.1143/JPSJ.46.176

10.1016/j.optmat.2005.03.007

10.1007/s10853‐008‐2852‐2

10.1016/j.biomaterials.2010.06.019

10.1016/S0040‐6090(02)01219‐1

10.1016/0584-8539(81)80011-6

10.1016/0584-8539(82)80187-6

Koshevar V. D., 1995, The influence of poly(methyl methacrylate) on the stability of zinc oxide dispersions in nonaqueous media of various acidity, Colloid journal of the Russian Academy of Sciences, 57, 649

10.1016/j.polymer.2006.03.007

10.1016/j.solmat.2006.02.030

10.1016/S0079‐6700(02)00019‐9

Yu H. Y., 2004, Chemical modification on the surface of nano-particles of ZnO and its characterization, Spectroscopy and Spectral Analysis, 24, 177

10.1088/0957‐4484/18/21/215606

Kine B. R., 1981, Kirk-Othmer Encycopedia of Chemical Technology

10.1002/macp.201000191

10.1007/s00289‐006‐0721‐1

10.1021/ma070142e

10.1557/jmr.2007.0427

10.1021/ma00162a010