Polynomial power-Pareto quantile function models
Tóm tắt
In this paper we propose a polynomial power-Pareto quantile function model and a Bayesian method for parameters estimation. We also carried out simulation studies and applied our methodology to real data sets empirically. The results show that a quantile function approach to statistical modelling is very flexible due to the properties of quantile functions, and that the combination of a power and a Pareto distribution enables us to model both the main body and the tails of a distribution, even though the mathematical form of the distribution does not exist. Our research also suggests a new approach to studying extreme values based on a whole data set rather than group maximum/minimum or exceedances above/below a proper threshold value.
Tài liệu tham khảo
Barrett, J.H.: An extreme value analysis of the flow of Burbage Brook. Stoch. Hydrol. Hydraul. 6, 151–165 (1992)
Cai, Y.: A quantile approach to US GNP. Econ. Model. 24, 969–979 (2007)
Cai, Y., Stander, J.: Quantile self-exciting threshold autoregressive time series models. J. Time Ser. Anal. 29, 186–202 (2008)
Coles, S.: An Introduction to Statistical Modelling of Extreme Values. Springer Series in Statistics. Springer, New York (2001)
Davison, A.C., Smith, R.L.: Models for exceedances over high thresholds. J. R. Stat. Soc. B 52, 393–442 (1990)
Freeze, K.: Monster waves threaton rescu helicopters. In: Proceedings, U.S. Naval Institute, Annapolis, Maryland, p. 410. http://www.check-six.com/Coast_Guard/Monster_Waves_Reprint-screen.pdf (2006)
Gilchrist, W.G.: Statistical Modelling with Quantile Functions. Chapman & Hall/CRC, London (2000)
Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov Chain Monte Carlo in Practice: Interdisciplinary Statistics. Chapman and Hall/CRC, London (1996)
Koenker, R.: Quantile Regression. Cambridge University Press, Cambridge (2005)
Koenker, R., D’Orey, V.: Computing regression quantiles. Appl. Stat. 36, 383–393 (1987)
Koenker, R., D’Orey, V.: A remark on algorithm AS229: computing dual regression quantiles and regression rank scores. Appl. Stat. 43, 410–414 (1994)
Koenker, R., Xiao, Z.: Unit root quantile autoregression inference. J. Am. Stat. Assoc. 99, 775–787 (2004)
Koenker, R., Xiao, Z.: Quantile autoregression. J. Am. Stat. Assoc. 101, 980–990 (2006)
O’Hagan, A., Forster, J.J.: Bayesian Inference. Arnold, London (2004)
Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer, New York (2004)
Roberts, G.O., Rosenthal, J.S.: Optimal scaling for various Metropolis-Hastings algorithms. Stat. Sci. 16, 351–367 (2001)
Yu, K., Moyeed, R.A.: Bayesian quantile regression. Stat. Probab. Lett. 54, 437–447 (2001)
