Polymorphism of Li2Zn3

International Union of Crystallography (IUCr) - Tập 68 Số 1 - Trang 34-39 - 2012
Volodymyr Pavlyuk1,2, Ihor Chumak3, Helmut Ehrenberg3,4
1Department of Inorganic Chemistry, Ivan Franko National University, Kyryla and Mefodiya str., 6, 79005 Lviv, Ukraine
2Institute of Chemistry, Environment Protection and Biotechnology, Jan Dlugosz University, al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland
3IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden, Germany
4Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany

Tóm tắt

Crystal structures of low- and high-temperature modifications of the binary phase Li2Zn3 were determined by single-crystal X-ray diffraction techniques. The low-temperature modification is a disordered variant of Li5Sn2, space group R\bar 3m (No. 166). The high-temperature modification crystallizes as an anti-type to Li5Ga4, space group P\bar 3m1 (No. 164). Two polymorphs can be described as derivative structures to binary Li5Ga4, Li5Sn2, Li13Sn5, Li8Pb3, CeCd2 and CdI2 phases which belong to class 2 with the parent W-type in Krypyakevich's classification. All atoms in both polymorphs are coordinated by rhombic dodecahedra (coordination number CN = 14) like atoms in related structures. The Li2Zn2.76 (for the low-temperature phase) and Li2Zn2.82 (for the high-temperature phase) compositions were obtained after structure refinements. According to electronic structure calculations using the tight-binding–linear muffin-tin orbital–atomic spheres approximations (TB–LMTO–ASA) method, strong covalent Sn—Sn and Ga—Ga interactions were established in Li5Sn2 and Li5Ga4, but no similar Zn—Zn interactions were observed in Li2Zn3.

Từ khóa


Tài liệu tham khảo

Andersen, 1975, Phys. Rev. B, 12, 3060, 10.1103/PhysRevB.12.3060

Andersen, O. K. (1984). The Electronic Structure of Complex Systems, edited by P. Phariseau & M. Temmerman. NewYork: Plenum Press.

Andersen, 1984, Phys. Rev. Lett., 53, 2571, 10.1103/PhysRevLett.53.2571

Azarska, 2003, J. Alloys Compd, 361, 125, 10.1016/S0925-8388(03)00389-X

Azarska, 2003, Pol. J. Chem., 77, 1027

Barth, 1972, J. Phys. C, 5, 1629, 10.1088/0022-3719/5/13/012

Becke, 1994, Nature, 371, 683, 10.1038/371683a0

Blöchl, 1994, Phys. Rev. B, 49, 16223, 10.1103/PhysRevB.49.16223

Bozorth, 1922, J. Am. Chem. Soc., 44, 2232, 10.1021/ja01431a019

Brandenburg, K. (2006). DIAMOND, Version 3.1e. Crystal Impact GbR, Bonn, Germany.

Bruker (2004a). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2004b). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2004c). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cenzual, 1990, Z. Kristallogr., 193, 217, 10.1524/zkri.1990.193.3-4.217

Chumak, 2010, J. Mater. Res., 25/8, 1492, 10.1557/JMR.2010.0191

Dmytriv, 2007, Visn. Lviv. Univ. Ser. Khim., 48, 172

Dronskowski, 1993, J. Phys. Chem., 97, 8617, 10.1021/j100135a014

Fischer, 2010, Z. Anorg. Allg. Chem., 636, 1917, 10.1002/zaac.201000222

Frank, 1975, Z. Naturforsch. B, 30, 316, 10.1515/znb-1975-5-605

Gelato, 1987, J. Appl. Cryst., 20, 139, 10.1107/S0021889887086965

Grube, 1933, Z. Anorg. Allg. Chem., 215, 211, 10.1002/zaac.19332150208

Iandelli, 1954, Gazz. Chim. Ital., 84, 463

Kohn, 1954, Phys. Rev., 94, 1111, 10.1103/PhysRev.94.1111

Korringa, 1947, Physcia, 13, 392, 10.1016/0031-8914(47)90013-X

Krier, G., Jepsen, O., Burkhardt, A. & Andersen, O. K. (1995). TB-LMTOASA, Version 4.7. Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany.

Krypyakevich, P. I. (1977). Structure Types of Intermetallic Compounds. Moscow: Nauka. (In Russian).

Pavlyuk, 1992, Kristallografia, 37, 1027

Pavlyuk, 2010, Solid State Sci., 12, 274, 10.1016/j.solidstatesciences.2009.11.006

Pelton, 1991, J. Phase Equilib., 12, 42, 10.1007/BF02663672

Sheldrick, 2008, Acta Cryst. A, 64, 112, 10.1107/S0108767307043930

Skriver, H. (1984). The LMTO Method. Berlin: Springer-Verlag.

Westrip, 2010, J. Appl. Cryst., 43, 920, 10.1107/S0021889810022120

Zintl, 1935, Z. Elektrochem. Angew. Phys. Chem., 41, 764