Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells

Nature Immunology - Tập 8 Số 12 - Trang 1313-1323 - 2007
Katsuto Takenaka1, Tatiana K. Prasolava2, Jean Wang1, Steven Mortin-Toth2, Sam Khalouei2, Olga I. Gan1, John E. Dick3, Jayne S. Danska2
1Division of Cellular and Molecular Biology, University Health Network, Toronto, M5G2M9, Ontario, Canada
2Program in Genetics and Genomic Biology, The Hospital for Sick Children Research Institute, Toronto, M5G1X8, Ontario, Canada
3Department of Molecular Genetics and Microbiology, Faculty of Medicine, University of Toronto, Toronto, M5S1A8, Ontario, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Thomas, E.D. et al. One hundred patients with acute leukemia treated by chemotherapy, total body irradiation, and allogeneic marrow transplantation. Blood 49, 511–533 (1977).

Storb, R., Prentice, R.L. & Thomas, E.D. Marrow transplantation for treatment of aplastic anemia. An analysis of factors associated with graft rejection. N. Engl. J. Med. 296, 61–66 (1977).

Gale, R.P. et al. Prevention of graft rejection following bone marrow transplantation. Blood 57, 9–12 (1981).

Suda, T., Arai, F. & Hirao, A. Hematopoietic stem cells and their niche. Trends Immunol. 26, 426–433 (2005).

Lapidot, T., Dar, A. & Kollet, O. How do stem cells find their way home? Blood 106, 1901–1910 (2005).

Murphy, W.J., Kumar, V. & Bennett, M. Rejection of bone marrow allografts by mice with severe combined immune deficiency (SCID). Evidence that natural killer cells can mediate the specificity of marrow graft rejection. J. Exp. Med. 165, 1212–1217 (1987).

McKenzie, J.L., Gan, O.I., Doedens, M. & Dick, J.E. Human short-term repopulating stem cells are efficiently detected following intrafemoral transplantation into NOD/SCID recipients depleted of CD122+ cells. Blood 106, 1259–1261 (2005).

Wang, J.C.Y. et al. In Hematopoiesis—A Developmental Approach (ed. Zon, L.I.) 99–118 (Oxford University Press, New York, 2001).

Dorshkind, K., Pollack, S.B., Bosma, M.J. & Phillips, R.A. Natural killer (NK) cells are present in mice with severe combined immunodeficiency (scid). J. Immunol. 134, 3798–3801 (1985).

Shultz, L.D. et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J. Immunol. 154, 180–191 (1995).

Glimm, H. et al. Previously undetected human hematopoietic cell populations with short-term repopulating activity selectively engraft NOD/SCID-β2 microglobulin-null mice. J. Clin. Invest. 107, 199–206 (2001).

Greiner, D.L. et al. Improved engraftment of human spleen cells in NOD/LtSz-scid/scid mice as compared with C.B-17-scid/scid mice. Am. J. Pathol. 146, 888–902 (1995).

Larochelle, A. et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat. Med. 2, 1329–1337 (1996).

O'Brien, B.A., Huang, Y., Geng, X., Dutz, J.P. & Finegood, D.T. Phagocytosis of apoptotic cells by macrophages from NOD mice is reduced. Diabetes 51, 2481–2488 (2002).

Ogasawara, K. et al. Impairment of NK cell function by NKG2D modulation in NOD mice. Immunity 18, 41–51 (2003).

Piganelli, J.D., Martin, T. & Haskins, K. Splenic macrophages from the NOD mouse are defective in the ability to present antigen. Diabetes 47, 1212–1218 (1998).

Anderson, M.S. & Bluestone, J.A. The NOD mouse: a model of immune dysregulation. Annu. Rev. Immunol. 23, 447–485 (2005).

Acha-Orbea, H. & McDevitt, H.O. The first external domain of the nonobese diabetic mouse class II I-A β chain is unique. Proc. Natl. Acad. Sci. USA 84, 2435–2439 (1987).

Kissler, S. et al. In vivo RNA interference demonstrates a role for Nramp1 in modifying susceptibility to type 1 diabetes. Nat. Genet. 38, 479–483 (2006).

Vijayakrishnan, L. et al. An autoimmune disease-associated CTLA-4 splice variant lacking the B7 binding domain signals negatively in T cells. Immunity 20, 563–575 (2004).

Yamanouchi, J. et al. Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nat. Genet. 39, 329–337 (2007).

Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).

Zijlstra, M. β2-microglobulin deficient mice lack CD4−8+ cytolytic T cells. Nature 344, 742–746 (1990).

Kagi, D. et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369, 31–37 (1994).

Shultz, L.D. et al. NOD/LtSz-Rag1null mice: an immunodeficient and radioresistant model for engraftment of human hematolymphoid cells, HIV infection, and adoptive transfer of NOD mouse diabetogenic T cells. J. Immunol. 164, 2496–2507 (2000).

Prochazka, M., Serreze, D.V., Frankel, W.N. & Leiter, E.H. NOR/Lt mice: MHC-matched diabetes-resistant control strain for NOD mice. Diabetes 41, 98–106 (1992).

Serreze, D.V., Prochazka, M., Reifsnyder, P.C., Bridgett, M.M. & Leiter, E.H. Use of recombinant congenic and congenic strains of NOD mice to identify a new insulin-dependent diabetes resistance gene. J. Exp. Med. 180, 1553–1558 (1994).

Barclay, A.N. & Brown, M.H. The SIRP family of receptors and immune regulation. Nat. Rev. Immunol. 6, 457–464 (2006).

Sano, S., Ohnishi, H. & Kubota, M. Gene structure of mouse BIT/SHPS-1. Biochem. J. 344, 667–675 (1999).

van den Nieuwenhof, I.M., Renardel de Lavalette, C., Diaz, N., van Die, I. & van den Berg, T.K. Differential galactosylation of neuronal and haematopoietic signal regulatory protein-α determines its cellular binding-specificity. J. Cell Sci. 114, 1321–1329 (2001).

Seiffert, M. et al. Human signal-regulatory protein is expressed on normal, but not on subsets of leukemic myeloid cells and mediates cellular adhesion involving its counterreceptor CD47. Blood 94, 3633–3643 (1999).

Seiffert, M. et al. Signal-regulatory protein α (SIRPα) but not SIRPβ is involved in T-cell activation, binds to CD47 with high affinity, and is expressed on immature CD34+CD38− hematopoietic cells. Blood 97, 2741–2749 (2001).

Vernon-Wilson, E.F. et al. CD47 is a ligand for rat macrophage membrane signal regulatory protein SIRP (OX41) and human SIRPα1. Eur. J. Immunol. 30, 2130–2137 (2000).

Hatherley, D., Harlos, K., Dunlop, D.C., Stuart, D.I. & Barclay, A.N. The structure of the macrophage signal regulatory protein α (SIRPα) inhibitory receptor reveals a binding face reminiscent of that used by T cell receptors. J. Biol. Chem. 282, 14567–14575 (2007).

Veillette, A., Thibaudeau, E. & Latour, S. High expression of inhibitory receptor SHPS-1 and its association with protein-tyrosine phosphatase SHP-1 in macrophages. J. Biol. Chem. 273, 22719–22728 (1998).

Oldenborg, P.A., Gresham, H.D. & Lindberg, F.P. CD47-signal regulatory protein α (SIRPα) regulates Fcγ and complement receptor-mediated phagocytosis. J. Exp. Med. 193, 855–862 (2001).

Blazar, B.R. et al. CD47 (integrin-associated protein) engagement of dendritic cell and macrophage counterreceptors is required to prevent the clearance of donor lymphohematopoietic cells. J. Exp. Med. 194, 541–549 (2001).

Smith, R.E. et al. A novel MyD-1 (SIRP-1α) signaling pathway that inhibits LPS-induced TNFα production by monocytes. Blood 102, 2532–2540 (2003).

Alblas, J. et al. Signal regulatory protein α ligation induces macrophage nitric oxide production through JAK/STAT- and phosphatidylinositol 3-kinase/Rac1/NAPDH oxidase/H2O2-dependent pathways. Mol. Cell. Biol. 25, 7181–7192 (2005).

Shultz, L.D. et al. Regulation of human short-term repopulating cell (STRC) engraftment in NOD/SCID mice by host CD122+ cells. Exp. Hematol. 31, 551–558 (2003).

Hauser, S.P., Waldron, J.A., Upuda, K.B. & Lipschitz, D.A. Morphological characterization of stromal cell types in hematopoietically active long-term murine bone marrow cultures. J. Histochem. Cytochem. 43, 371–379 (1995).

Issaad, C., Croisille, L., Katz, A., Vainchenker, W. & Coulombel, L. A murine stromal cell line allows the proliferation of very primitive human CD34++/CD38− progenitor cells in long-term cultures and semisolid assays. Blood 81, 2916–2924 (1993).

Subramanian, S., Parthasarathy, R., Sen, S., Boder, E.T. & Discher, D.E. Species- and cell type-specific interactions between CD47 and human SIRPα. Blood 107, 2548–2556 (2006).

Latour, S. et al. Bidirectional negative regulation of human T and dendritic cells by CD47 and its cognate receptor signal-regulator protein-α: down-regulation of IL-12 responsiveness and inhibition of dendritic cell activation. J. Immunol. 167, 2547–2554 (2001).

Brown, E.J. & Frazier, W.A. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol. 11, 130–135 (2001).

Oldenborg, P.A. et al. Role of CD47 as a marker of self on red blood cells. Science 288, 2051–2054 (2000).

Gardai, S.J. et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123, 321–334 (2005).

Ide, K. et al. Role for CD47-SIRPα signaling in xenograft rejection by macrophages. Proc. Natl. Acad. Sci. USA 104, 5062–5066 (2007).

Pozzilli, P., Signore, A., Williams, A.J. & Beales, P.E. NOD mouse colonies around the world—recent facts and figures. Immunol. Today 14, 193–196 (1993).

Gan, O.I. et al. Characterization and retroviral transduction of an early human lymphomyeloid precursor assayed in nonswitched long-term culture on murine stroma. Exp. Hematol. 27, 1097–1106 (1999).

Guenechea, G. et al. Transduction of human CD34+ CD38− bone marrow and cord blood-derived SCID-repopulating cells with third-generation lentiviral vectors. Mol. Ther. 1, 566–573 (2000).