Polymeric biomaterials: Advanced drug delivery systems in osteoarthritis treatment
Tài liệu tham khảo
Sharma, 2021, Osteoarthritis of the knee, N. Engl. J. Med., 384, 51, 10.1056/NEJMcp1903768
Glyn-Jones, 2015, Osteoarthritis, Lancet, 386, 376, 10.1016/S0140-6736(14)60802-3
Zhang, 2022, Advanced application of stimuli-responsive drug delivery system for inflammatory arthritis treatment, Mater Today Bio, 14
Rahimi, 2021, Recent developments in natural and synthetic polymeric drug delivery systems used for the treatment of osteoarthritis, Acta Biomater., 123, 31, 10.1016/j.actbio.2021.01.003
Liang, 2022, PLA-lignin nanofibers as antioxidant biomaterials for cartilage regeneration and osteoarthritis treatment, J Nanobiotechnology, 20, 327, 10.1186/s12951-022-01534-2
Liang, 2020, Implantable and degradable antioxidant poly(epsilon-caprolactone)-lignin nanofiber membrane for effective osteoarthritis treatment, Biomaterials
Saeedi, 2020, Polymer colloids as drug delivery systems for the treatment of arthritis, Adv. Colloid Interface Sci., 285, 10.1016/j.cis.2020.102273
Mei, 2021, Polymer particles for the intra-articular delivery of drugs to treat osteoarthritis, Biomed Mater, 16, 10.1088/1748-605X/abee62
Lin, 2022, Injectable natural polymer hydrogels for treatment of knee osteoarthritis, Adv Healthc Mater, 11, 10.1002/adhm.202101479
Noth, 2008, Technology insight: adult mesenchymal stem cells for osteoarthritis therapy, Nat. Clin. Pract. Rheumatol., 371, 10.1038/ncprheum0816
Martel-Pelletier, 2016, Osteoarthritis, Nat Rev Dis Primers
Coaccioli, 2022, Osteoarthritis: new insight on its pathophysiology, J. Clin. Med., 11, 10.3390/jcm11206013
Xu, 2020, A molecular cascade underlying articular cartilage degeneration, Curr. Drug Targets, 21, 838, 10.2174/1389450121666200214121323
Hu, 2019, Quercetin alleviates rat osteoarthritis by inhibiting inflammation and apoptosis of chondrocytes, modulating synovial macrophages polarization to M2 macrophages, Free Radic. Biol. Med., 145, 146, 10.1016/j.freeradbiomed.2019.09.024
Kapoor, 2011, Role of proinflammatory cytokines in the pathophysiology of osteoarthritis, Nat. Rev. Rheumatol., 7, 33, 10.1038/nrrheum.2010.196
Hu, 2021, Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis, Ann. Rheum. Dis., 80, 413, 10.1136/annrheumdis-2020-218089
Zhu, 2019, Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain, J. Clin. Invest., 129, 1076, 10.1172/JCI121561
Kovacs, 2019, Regulatory effects and interactions of the Wnt and OPG-RANKL-RANK signaling at the bone-cartilage interface in osteoarthritis, Int. J. Mol. Sci., 20, 10.3390/ijms20184653
Burr, 2012, Bone remodelling in osteoarthritis, Nat. Rev. Rheumatol., 665, 10.1038/nrrheum.2012.130
Woo, 2011, Grape seed proanthocyanidin extract ameliorates monosodium iodoacetate-induced osteoarthritis, Exp. Mol. Med., 43, 561, 10.3858/emm.2011.43.10.062
Wu, 2020, Degradation of subchondral bone collagen in the weight-bearing area of femoral head is associated with osteoarthritis and osteonecrosis, J. Orthop. Surg. Res., 15, 526, 10.1186/s13018-020-02065-y
Sanchez-Lopez, 2022, Synovial inflammation in osteoarthritis progression, Nat. Rev. Rheumatol., 18, 258, 10.1038/s41584-022-00749-9
Haraden, 2019, Synovial fluid biomarkers associated with osteoarthritis severity reflect macrophage and neutrophil related inflammation, Arthritis Res. Ther., 21, 146, 10.1186/s13075-019-1923-x
Deroyer, 2022, CEMIP (KIAA1199) regulates inflammation, hyperplasia and fibrosis in osteoarthritis synovial membrane, Cell. Mol. Life Sci., 79, 260, 10.1007/s00018-022-04282-6
Chen, 2022, METTL3-mediated m(6)A modification of ATG7 regulates autophagy-GATA4 axis to promote cellular senescence and osteoarthritis progression, Ann. Rheum. Dis., 81, 87, 10.1136/annrheumdis-2021-221091
Guilak, 2011, Biomechanical factors in osteoarthritis, Best Pract. Res. Clin. Rheumatol., 25, 815, 10.1016/j.berh.2011.11.013
Horak, 2011, Biomechanical factors influencing the beginning and development of osteoarthritis in the hip joint, Wien Med. Wochenschr., 161, 486, 10.1007/s10354-011-0906-6
Jackson, 2004, Reviewing knee osteoarthritis--a biomechanical perspective, J. Sci. Med. Sport, 347, 10.1016/S1440-2440(04)80030-6
Aubourg, 2022, Genetics of osteoarthritis, Osteoarthritis Cartilage, 636, 10.1016/j.joca.2021.03.002
Yao, 2023, Osteoarthritis: pathogenic signaling pathways and therapeutic targets, Signal Transduct Target Ther, 56, 10.1038/s41392-023-01330-w
Brisola, 2022, Association between genetic polymorphisms and osteoarthritis development. Overview of systematic reviews, Int J Rheum Dis, 25, 733, 10.1111/1756-185X.14362
Ai, 2023, Nanocellulose-based hydrogels for drug delivery, J. Mater. Chem. B, 11, 7004, 10.1039/D3TB00478C
He, 2022, Nanocellulose-based hydrogels as versatile drug delivery vehicles: a review, Int. J. Biol. Macromol., 830, 10.1016/j.ijbiomac.2022.09.214
Wang, 2019, Nano-drug delivery systems in wound treatment and skin regeneration, J Nanobiotechnology, 17, 82, 10.1186/s12951-019-0514-y
Gonzalez-Alvarez, 2013, Hydrogels: an interesting strategy for smart drug delivery, Ther. Deliv., 157, 10.4155/tde.12.142
Kapoor, 2016, Silk protein-based hydrogels: promising advanced materials for biomedical applications, Acta Biomater., 31, 17, 10.1016/j.actbio.2015.11.034
Al-Jbour, 2019, An overview of chitosan nanofibers and their applications in the drug delivery process, Curr. Drug Deliv., 16, 272, 10.2174/1567201816666190123121425
Hu, 2014, Electrospinning of polymeric nanofibers for drug delivery applications, J Control Release, 185, 12, 10.1016/j.jconrel.2014.04.018
Ismail, 2019, Reactive and functionalized electrospun polymeric nanofibers for drug delivery and tissue engineering applications, Ther. Deliv., 10, 397, 10.4155/tde-2019-0028
Sakpal, 2022, Recent advancements in polymeric nanofibers for ophthalmic drug delivery and ophthalmic tissue engineering, Biomater. Adv., 141, 10.1016/j.bioadv.2022.213124
Birk, 2021, Polymeric nano- and microparticulate drug delivery systems for treatment of biofilms, Adv. Drug Deliv. Rev., 174, 30, 10.1016/j.addr.2021.04.005
Floyd, 2015, Drug encapsulated polymeric microspheres for intracranial tumor therapy: a review of the literature, Adv. Drug Deliv. Rev., 91, 23, 10.1016/j.addr.2015.04.008
Ji, 2022, Injectable immunomodulation-based porous chitosan microspheres/HPCH hydrogel composites as a controlled drug delivery system for osteochondral regeneration, Biomaterials
Li, 2022, High drug-loaded microspheres enabled by controlled in-droplet precipitation promote functional recovery after spinal cord injury, Nat. Commun., 13, 1262, 10.1038/s41467-022-28787-7
Mao, 2012, Recent advances in polymeric microspheres for parenteral drug delivery--part 1, Expert Opin Drug Deliv, 1161, 10.1517/17425247.2012.709844
Matsumoto, 2021, Dry fabrication of poly(dl-lactide-co-glycolide) microspheres incorporating a medium molecular drug by a ball mill method, Drug Discov Ther, 15, 20, 10.5582/ddt.2021.01004
Liang, 2023, Preparation of melatonin-loaded nanoparticles with targeting and sustained release function and their application in osteoarthritis, Int. J. Mol. Sci., 24
Ko, 2013, Sulforaphane-PLGA microspheres for the intra-articular treatment of osteoarthritis, Biomaterials, 5359, 10.1016/j.biomaterials.2013.03.066
Shin, 2020, p66shc siRNA nanoparticles ameliorate chondrocytic mitochondrial dysfunction in osteoarthritis, Int. J. Nanomed., 15, 2379, 10.2147/IJN.S234198
Kim, 2022, Intra-articular injection of rebamipide-loaded nanoparticles attenuate disease progression and joint destruction in osteoarthritis rat model: a pilot study, Cartilage
Paik, 2019, Triamcinolone acetonide extended-release: a review in osteoarthritis pain of the knee, Drugs, 79, 455, 10.1007/s40265-019-01083-3
Shi, 2021, A review of existing strategies for designing long-acting parenteral formulations: focus on underlying mechanisms, and future perspectives, Acta Pharm. Sin. B, 11, 2396, 10.1016/j.apsb.2021.05.002
Li, 2023, Living and injectable porous hydrogel microsphere with paracrine activity for cartilage regeneration, Small, 19
Zhou, 2022, A hyaluronic acid/platelet-rich plasma hydrogel containing MnO(2) nanozymes efficiently alleviates osteoarthritis in vivo, Carbohydr. Polym., 292, 10.1016/j.carbpol.2022.119667
Cho, 2023, Prussian blue nanozymes coated with Pluronic attenuate inflammatory osteoarthritis by blocking c-Jun N-terminal kinase phosphorylation, Biomaterials
Zhu, 2023, Cationic micelles as nanocarriers for enhancing intra-cartilage drug penetration and retention, J. Mater. Chem. B, 11, 1670, 10.1039/D2TB02050E
Shen, 2021, Reactive oxygen species (ROS)-responsive nanoprobe for bioimaging and targeting therapy of osteoarthritis, J Nanobiotechnology, 19, 395, 10.1186/s12951-021-01136-4
Nguyen, 2023, Evaluation of ibuprofen prolonged release of biomedical PLA-PEG-PLA hydrogel via degradation mechanism, Int J Biomater (2023), 10.1155/2023/5005316
Su, 2022, Evaluation and preparation of a designed kartogenin drug delivery system (DDS) of hydrazone-linkage-based pH responsive mPEG-Hz-b-PCL nanomicelles for treatment of osteoarthritis, Front. Bioeng. Biotechnol., 10, 10.3389/fbioe.2022.816664
Vyawahare, 2022, Caffeic acid modified nanomicelles inhibit articular cartilage deterioration and reduce disease severity in experimental inflammatory arthritis, ACS Nano, 16, 18579, 10.1021/acsnano.2c07027
Qiu, 2023, 3D biomimetic calcified cartilaginous callus that induces type H vessels formation and osteoclastogenesis, Adv. Sci., 10
Najafi, 2023, Alginate sulfate/ECM composite hydrogel containing electrospun nanofiber with encapsulated human adipose-derived stem cells for cartilage tissue engineering, Int. J. Biol. Macromol., 238, 10.1016/j.ijbiomac.2023.124098
Theodoridis, 2023, Hypoxia promotes cartilage regeneration in cell-seeded 3D-printed bioscaffolds cultured with a bespoke 3D culture device, Int. J. Mol. Sci., 24, 10.3390/ijms24076040
Li, 2005, A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells, Biomaterials, 599, 10.1016/j.biomaterials.2004.03.005
Kim, 2015, Fibrous scaffolds with varied fiber chemistry and growth factor delivery promote repair in a porcine cartilage defect model, Tissue Eng Part A, 2680, 10.1089/ten.tea.2015.0150
Schagemann, 2013, Chondrogenic differentiation of bone marrow-derived mesenchymal stromal cells via biomimetic and bioactive poly-epsilon-caprolactone scaffolds, J. Biomed. Mater. Res., 101, 1620, 10.1002/jbm.a.34457
Campos, 2022, The incorporation of etanercept into a porous tri-layer scaffold for restoring and repairing cartilage tissue, Pharmaceutics, 14, 10.3390/pharmaceutics14020282
Parivatphun, 2020, Constructed microbubble porous scaffolds of polyvinyl alcohol for subchondral bone formation for osteoarthritis surgery, Biomed Mater, 15, 10.1088/1748-605X/ab99d5
Wang, 2022, Hyaluronic acid modified curcumin-loaded chitosan nanoparticles inhibit chondrocyte apoptosis to attenuate osteoarthritis via upregulation of activator protein 1 and RUNX family transcription factor 2, J. Biomed. Nanotechnol., 18, 144, 10.1166/jbn.2022.3193
Qin, 2020, Biomimetic bilayer scaffold as an incubator to induce sequential chondrogenesis and osteogenesis of adipose derived stem cells for construction of osteochondral tissue, ACS Biomater. Sci. Eng., 6, 3070, 10.1021/acsbiomaterials.0c00200
Wang, 2022, Duo cadherin-functionalized microparticles synergistically induce chondrogenesis and cartilage repair of stem cell aggregates, Adv Healthc Mater, 11, 10.1002/adhm.202270081
Guilak, 2018, Osteoarthritis as a disease of the cartilage pericellular matrix, Matrix Biol., 71, 40, 10.1016/j.matbio.2018.05.008
Diaz-Rodriguez, 2021, Targeting joint inflammation for osteoarthritis management through stimulus-sensitive hyaluronic acid based intra-articular hydrogels, Mater Sci Eng C Mater Biol Appl, 128, 10.1016/j.msec.2021.112254
Ai, 2021, Cartilage-targeting ultrasmall lipid-polymer hybrid nanoparticles for the prevention of cartilage degradation, Bioeng Transl Med, 6, 10.1002/btm2.10187
Utamawatin, 2023, The efficacy of intra-articular triamcinolone acetonide 10 mg vs. 40 mg in patients with knee osteoarthritis: a non-inferiority, randomized, controlled, double-blind, multicenter study, BMC Musculoskelet Disord, 92, 10.1186/s12891-023-06191-6
McAlindon, 2017, Effect of intra-articular triamcinolone vs saline on knee cartilage volume and pain in patients with knee osteoarthritis: a randomized clinical trial, JAMA, 317, 1967, 10.1001/jama.2017.5283