Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology

Springer Science and Business Media LLC - Tập 25 Số 16 - Trang 3731
Aleksandra Zielińska1,2, Filipa Carreiró1, Ana M. Oliveira1, Andreia Neves1, Bárbara Aliende Pires1, D. Nagasamy Venkatesh3, Alessandra Durazzo4, Massimo Lucarini4, Piotr Eder5, Amélia M. Silva6,7, Antonello Santini8, Eliana B. Souto9,1
1Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
2Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
3JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643 001, Tamil Nadu, India.
4CREA-Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178 Rome, Italy
5Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland.
6Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
7Department of Biology and Environment, University of Tras-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal.
8Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
9CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal

Tóm tắt

Polymeric nanoparticles (NPs) are particles within the size range from 1 to 1000 nm and can be loaded with active compounds entrapped within or surface-adsorbed onto the polymeric core. The term “nanoparticle” stands for both nanocapsules and nanospheres, which are distinguished by the morphological structure. Polymeric NPs have shown great potential for targeted delivery of drugs for the treatment of several diseases. In this review, we discuss the most commonly used methods for the production and characterization of polymeric NPs, the association efficiency of the active compound to the polymeric core, and the in vitro release mechanisms. As the safety of nanoparticles is a high priority, we also discuss the toxicology and ecotoxicology of nanoparticles to humans and to the environment.

Từ khóa


Tài liệu tham khảo

Soppimath, 2001, Biodegradable polymeric nanoparticles as drug delivery devices, J. Control. Release, 70, 1, 10.1016/S0168-3659(00)00339-4

Cano, 2019, Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model, J. Control. Release, 301, 62, 10.1016/j.jconrel.2019.03.010

Cano, A., Sánchez-López, E., Ettcheto, M., López-Machado, A., Espina, M., Souto, E.B., Galindo, R., Camins, A., García, M.L., and Turowski, P. (2020). Current advances in the development of novel polymeric nanoparticles for the treatment of neurodegenerative diseases. Nanomed. (Future Med.).

Peppas, 2006, Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles, Int. J. Pharm., 307, 93, 10.1016/j.ijpharm.2005.10.010

Schaffazick, 2003, Freeze-drying polymeric colloidal suspensions: Nanocapsules, nanospheres and nanodispersion. A comparative study, Eur. J. Pharm. Biopharm., 56, 501, 10.1016/S0939-6411(03)00139-5

Crucho, 2017, Polymeric nanoparticles: A study on the preparation variables and characterization methods, Mater. Sci. Eng. C Mater. Biol. Appl., 80, 771, 10.1016/j.msec.2017.06.004

Guterres, 2007, Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications, Drug Target Insights, 2, 117739280700200002, 10.1177/117739280700200002

Christoforidis, J.B., Chang, S., Jiang, A., Wang, J., and Cebulla, C.M. (2012). Intravitreal devices for the treatment of vitreous inflammation. Mediat. Inflamm., 2012.

Szczęch, M., and Szczepanowicz, K. (2020). Polymeric Core-Shell Nanoparticles Prepared by Spontaneous Emulsification Solvent Evaporation and Functionalized by the Layer-by-Layer Method. Nanomaterials, 10.

2019, Rapamycin-loaded polysorbate 80-coated PLGA nanoparticles: Optimization of formulation variables and in vitro anti-glioma assessment, J. Drug Deliv. Sci. Technol., 52, 488, 10.1016/j.jddst.2019.05.026

Traeger, 2020, Improved bioactivity of the natural product 5-lipoxygenase inhibitor hyperforin by encapsulation into polymeric nanoparticles, Mol. Pharm., 17, 810, 10.1021/acs.molpharmaceut.9b01051

Qiu, 2019, Fenofibrate-loaded biodegradable nanoparticles for the treatment of experimental diabetic retinopathy and neovascular age-related macular degeneration, Mol. Pharm., 16, 1958, 10.1021/acs.molpharmaceut.8b01319

Saqib, M., Ali Bhatti, A.S., Ahmad, N.M., Ahmed, N., Shahnaz, G., Lebaz, N., and Elaissari, A. (2020). Amphotericin B Loaded Polymeric Nanoparticles for Treatment of Leishmania Infections. Nanomaterials, 10.

Nazende, 2019, Preparation of fenofibrate loaded eudragit l100 nanoparticles by nanoprecipitation method, Mater. Today Proc., 13, 428, 10.1016/j.matpr.2019.03.176

Anand, 2020, Ciprofloxacin-loaded polymeric nanoparticles incorporated electrospun fibers for drug delivery in tissue engineering applications, Drug Deliv. Transl. Res., 10, 706, 10.1007/s13346-020-00736-1

Gao, 2020, Enhanced curcumin solubility and antibacterial activity by encapsulation in PLGA oily core nanocapsules, Food Funct., 11, 448, 10.1039/C9FO00901A

Dourado, 2020, Pharmaceutical Nanotechnology: A Therapeutic Revolution, Int. J. Pharm. Sci. Dev. Res., 6, 009, 10.17352/ijpsdr.000027

Bechnak, L., Khalil, C., El Kurdi, R., Khnayzer, R.S., and Patra, D. (2020). Curcumin encapsulated colloidal amphiphilic block co-polymeric nanocapsules: Colloidal nanocapsules enhance photodynamic and anticancer activities of curcumin. Photochem. Photobiol. Sci.

Moncalvo, 2020, Nanosized delivery systems for therapeutic proteins: Clinically validated technologies and advanced development strategies, Front. Bioeng. Biotechnol., 8, 89, 10.3389/fbioe.2020.00089

Avramović, N., Mandić, B., Savić-Radojević, A., and Simić, T. (2020). Polymeric Nanocarriers of Drug Delivery Systems in Cancer Therapy. Pharmaceutics, 12.

Lammari, N., Louaer, O., Meniai, A.H., and Elaissari, A. (2020). Encapsulation of Essential Oils via Nanoprecipitation Process: Overview, Progress, Challenges and Prospects. Pharmaceutics, 12.

Jummes, 2020, Antioxidant and antimicrobial poly-ε-caprolactone nanoparticles loaded with Cymbopogon martinii essential oil, Biocatal. Agric. Biotechnol., 23, 101499, 10.1016/j.bcab.2020.101499

2019, Application of a multisystem coating based on polymeric nanocapsules containing essential oil of Thymus vulgaris L. to increase the shelf life of table grapes (Vitis vinifera L.), Ieee Trans. Nanobioscience, 18, 549, 10.1109/TNB.2019.2941931

Froiio, F., Ginot, L., Paolino, D., Lebaz, N., Bentaher, A., Fessi, H., and Elaissari, A. (2019). Essential oils-loaded polymer particles: Preparation, characterization and antimicrobial property. Polymers, 11.

Silva-Flores, P.G., Pérez-López, L.A., Rivas-Galindo, V.M., Paniagua-Vega, D., Galindo-Rodríguez, S.A., and Álvarez-Román, R. (2019). Simultaneous GC-FID quantification of main components of Rosmarinus officinalis L. and Lavandula dentata essential oils in polymeric nanocapsules for antioxidant application. J. Anal. Methods Chem., 2019.

Jawahar, 2012, Polymeric nanoparticles for drug delivery and targeting: A comprehensive review, Int. J. Health Allied Sci., 1, 217, 10.4103/2278-344X.107832

Reis, 2006, Methods for preparation of drug-loaded polymeric nanoparticles, Nanomed. Nanotechnol. Biol. Med., 2, 8, 10.1016/j.nano.2005.12.003

Amgoth, C., Phan, C., Banavoth, M., Rompivalasa, S., and Tang, G. (2019). Polymer Properties: Functionalization and Surface Modified Nanoparticles. Role of Novel Drug Delivery Vehicles in Nanobiomedicine, IntechOpen.

Bennet, D., and Kim, S. (2014). Polymer nanoparticles for smart drug delivery. Application of Nanotechnology in Drug Delivery, IntechOpen.

2020, PLGA nanoparticle preparations by emulsification and nanoprecipitation techniques: Effects of formulation parameters, Rsc Adv., 10, 4218, 10.1039/C9RA10857B

Kamaly, 2016, Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release, Chem. Rev., 116, 2602, 10.1021/acs.chemrev.5b00346

Desgouilles, 2003, The design of nanoparticles obtained by solvent evaporation: A comprehensive study, Langmuir, 19, 9504, 10.1021/la034999q

Vieira, R., Souto, S.B., Sanchez-Lopez, E., Machado, A.L., Severino, P., Jose, S., Santini, A., Fortuna, A., Garcia, M.L., and Silva, A.M. (2019). Sugar-Lowering Drugs for Type 2 Diabetes Mellitus and Metabolic Syndrome-Review of Classical and New Compounds: Part-I. Pharmaceuticals, 12.

Jose, 2014, Surface modified PLGA nanoparticles for brain targeting of Bacoside-A, Eur. J. Pharm. Sci., 63, 29, 10.1016/j.ejps.2014.06.024

Grumezescu, A.M. (2017). Design and Development of New Nanocarriers, William Andrew.

Bohrey, 2016, Polymeric nanoparticles containing diazepam: Preparation, optimization, characterization, in-vitro drug release and release kinetic study, Nano Converg., 3, 1, 10.1186/s40580-016-0061-2

Christine, 2017, Polymer nanoparticles for nanomedicines. A guide for their design, Anticancer Res., 37, 1544

Sharma, 2016, Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study, Asian J. Pharm. Sci., 11, 404, 10.1016/j.ajps.2015.09.004

Kumar, 2012, Nanotechnology as Emerging Tool for Enhancing Solubility of Poorly Water-Soluble Drugs, BioNanoScience, 2, 227, 10.1007/s12668-012-0060-7

Souto, E.B., Souto, S.B., Campos, J.R., Severino, P., Pashirova, T.N., Zakharova, L.Y., Silva, A.M., Durazzo, A., Lucarini, M., and Izzo, A.A. (2019). Nanoparticle Delivery Systems in the Treatment of Diabetes Complications. Molecules, 24.

Souto, 2012, Preparação de nanopartículas poliméricas a partir da polimerização de monômeros: Parte I, Polímeros, 22, 96, 10.1590/S0104-14282012005000006

Allemann, 1998, Preparation and characterization of nanocapsules from preformed polymers by a new process based on emulsification-diffusion technique, Pharm. Res., 15, 1056, 10.1023/A:1011934328471

Vasile, C. (2018). Polymeric Nanomaterials in Nanotherapeutics, Elsevier.

Wang, Y., Li, P., Truong-Dinh Tran, T., Zhang, J., and Kong, L. (2016). Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials, 6.

Asiri, A.M., and Mohammad, A. (2018). 10—Polymer nanoparticle carriers in drug delivery systems: Research trend. Applications of Nanocomposite Materials in Drug Delivery, Woodhead Publishing.

Pal, 2011, Nanoparticle: An overview of preparation and characterization, J. Appl. Pharm. Sci., 1, 228

Vauthier, 2009, Methods for the preparation and manufacture of polymeric nanoparticles, Pharm. Res., 26, 1025, 10.1007/s11095-008-9800-3

Trends in Pharmaceutical and Food Sciences I, Cajal, Y., Muñoz-Torrero, D., Ciudad, C.J., and Valles, J. (2020). Polymeric Nanoparticles for the Treatment of Neurodegenerative Diseases. Alzheimer ’s Disease and Glaucoma, Open Access Journal of Pharmaceutical Research, Medwin Publishers. Chapter 7.

Krishnamoorthy, 2015, Selection of a suitable method for the preparation of polymeric nanoparticles: Multi-criteria decision making approach, Adv. Pharm. Bull., 5, 57

Araujo, 2009, Effect of polymer viscosity on physicochemical properties and ocular tolerance of FB-loaded PLGA nanospheres, Colloids Surf. B Biointerfaces, 72, 48, 10.1016/j.colsurfb.2009.03.028

Canadas, 2016, In vitro, ex vivo and in vivo characterization of PLGA nanoparticles loading pranoprofen for ocular administration, Int. J. Pharm., 511, 719, 10.1016/j.ijpharm.2016.07.055

Egea, 2016, PEGylated PLGA nanospheres optimized by design of experiments for ocular administration of dexibuprofen-in vitro, ex vivo and in vivo characterization, Colloids Surf. B Biointerfaces, 145, 241, 10.1016/j.colsurfb.2016.04.054

Sanchez-Lopez, E., Egea, M.A., Davis, B.M., Guo, L., Espina, M., Silva, A.M., Calpena, A.C., Souto, E.M.B., Ravindran, N., and Ettcheto, M. (2018). Memantine-Loaded PEGylated Biodegradable Nanoparticles for the Treatment of Glaucoma. Small, 14.

Ettcheto, 2018, Memantine loaded PLGA PEGylated nanoparticles for Alzheimer’s disease: In vitro and in vivo characterization, J. Nanobiotechnol., 16, 32, 10.1186/s12951-018-0356-z

Salatin, 2017, Development of a nanoprecipitation method for the entrapment of a very water soluble drug into Eudragit RL nanoparticles, Res. Pharm. Sci., 12, 1, 10.4103/1735-5362.199041

Tarhini, 2017, Nanoprecipitation process: From encapsulation to drug delivery, Int. J. Pharm., 532, 66, 10.1016/j.ijpharm.2017.08.064

Bilati, 2005, Nanoprecipitation versus emulsion-based techniques for the encapsulation of proteins into biodegradable nanoparticles and process-related stability issues, Aaps. Pharmscitech., 6, E594, 10.1208/pt060474

Chidambaram, 2014, Modifications to the conventional nanoprecipitation technique: An approach to fabricate narrow sized polymeric nanoparticles, Adv. Pharm. Bull., 4, 205

Silva, A.M., Alvarado, H.L., Abrego, G., Martins-Gomes, C., Garduno-Ramirez, M.L., Garcia, M.L., Calpena, A.C., and Souto, E.B. (2019). In Vitro Cytotoxicity of Oleanolic/Ursolic Acids-Loaded in PLGA Nanoparticles in Different Cell Lines. Pharmaceutics, 11.

Carbone, 2018, Repurposing itraconazole to the benefit of skin cancer treatment: A combined azole-DDAB nanoencapsulation strategy, Colloids Surf. B Biointerfaces, 167, 337, 10.1016/j.colsurfb.2018.04.031

Doktorovova, 2014, Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers—A systematic review of in vitro data, Eur. J. Pharm. Biopharm., 87, 1, 10.1016/j.ejpb.2014.02.005

Andreani, 2015, Effect of cryoprotectants on the reconstitution of silica nanoparticles produced by sol–gel technology, J. Therm. Anal. Calorim., 120, 1001, 10.1007/s10973-014-4275-4

Mathurin, 2018, How to unravel the chemical structure and component localization of individual drug-loaded polymeric nanoparticles by using tapping AFM-IR, Analyst, 143, 5940, 10.1039/C8AN01239C

Hickey, 2015, Control of polymeric nanoparticle size to improve therapeutic delivery, J. Control. Release, 219, 536, 10.1016/j.jconrel.2015.10.006

Brar, 2011, Measurement of nanoparticles by light-scattering techniques, Trac. Trends Anal. Chem., 30, 4, 10.1016/j.trac.2010.08.008

Carvalho, 2018, Application of light scattering techniques to nanoparticle characterization and development, Front. Chem., 6, 237, 10.3389/fchem.2018.00237

Mourdikoudis, 2018, Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties, Nanoscale, 10, 12871, 10.1039/C8NR02278J

Lu, M., Yang, X., Yang, Y., Qin, P., Wu, X., and Cai, Z. (2017). Nanomaterials as assisted matrix of laser desorption/ionization time-of-flight mass spectrometry for the analysis of small molecules. Nanomaterials, 7.

Yang, 2007, Conducting polymeric nanoparticles synthesized in reverse micelles and their gas sensitivity based on quartz crystal microbalance, Polymer, 48, 4459, 10.1016/j.polymer.2007.06.005

Dazon, 2019, Nanomaterial identification of powders: Comparing volume specific surface area, X-ray diffraction and scanning electron microscopy methods, Environ. Sci. Nano, 6, 152, 10.1039/C8EN00760H

Ferreira, 2020, Loading, release profile and accelerated stability assessment of monoterpenes-loaded solid lipid nanoparticles (SLN), Pharm. Dev. Technol., 25, 1

Doncom, 2017, Dispersity effects in polymer self-assemblies: A matter of hierarchical control, Chem. Soc. Rev., 46, 4119, 10.1039/C6CS00818F

Podzimek, S. (2011). Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation: Powerful Tools for the Characterization of Polymers, Proteins and Nanoparticles, John Wiley & Sons.

Stals, 2014, Folding polymers with pendant hydrogen bonding motifs in water: The effect of polymer length and concentration on the shape and size of single-chain polymeric nanoparticles, Macromolecules, 47, 2947, 10.1021/ma500273g

Mansfield, E., Kaiser, D.L., Fujita, D., and Van de Voorde, M. (2017). Metrology and Standardization for Nanotechnology: Protocols and Industrial Innovations, John Wiley & Sons.

Dumitriu, S., and Popa, V. (2013). Polymeric Biomaterials: Medicinal and Pharmaceutical Applications, CRC Press.

Baer, 2013, Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities, J. Vac. Sci. Technol. A Vac. Surf. Film., 31, 050820, 10.1116/1.4818423

Simonet, 2009, Monitoring nanoparticles in the environment, Anal. Bioanal. Chem., 393, 17, 10.1007/s00216-008-2484-z

Honary, 2013, Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1), Trop. J. Pharm. Res., 12, 255

Ostolska, 2014, Application of the zeta potential measurements to explanation of colloidal Cr 2 O 3 stability mechanism in the presence of the ionic polyamino acids, Colloid Polym. Sci., 292, 2453, 10.1007/s00396-014-3276-y

Zielińska, A., Ferreira, N.R., Durazzo, A., Lucarini, M., Cicero, N., Mamouni, S.E., Silva, A.M., Nowak, I., Santini, A., and Souto, E.B. (2019). Development and Optimization of Alpha-Pinene-Loaded Solid Lipid Nanoparticles (SLN) Using Experimental Factorial Design and Dispersion Analysis. Molecules, 24.

Calvo, 1997, Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers, J. Appl. Polym. Sci., 63, 125, 10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4

Doktorovova, 2014, Cationic solid lipid nanoparticles interfere with the activity of antioxidant enzymes in hepatocellular carcinoma cells, Int. J. Pharm., 471, 18, 10.1016/j.ijpharm.2014.05.011

González, A.E. (2016). Colloidal Aggregation Coupled with Sedimentation: A Comprehensive Overview. Adv. Colloid Sci., 211.

Kamiya, H., Gotoh, K., Shimada, M., Uchikoshi, T., Otani, Y., Fuji, M., Matsusaka, S., Matsuyama, T., Tatami, J., and Higashitani, K. (2008). Characteristics and behavior of nanoparticles and its dispersion systems. Nanoparticle Technology Handbook, Elsevier.

Lazzari, 2012, Colloidal stability of polymeric nanoparticles in biological fluids, J. Nanoparticle Res., 14, 920, 10.1007/s11051-012-0920-7

Heinz, 2017, Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications, Surf. Sci. Rep., 72, 1, 10.1016/j.surfrep.2017.02.001

Abdelwahed, 2006, Freeze-drying of nanoparticles: Formulation, process and storage considerations, Adv. Drug Deliv. Rev., 58, 1688, 10.1016/j.addr.2006.09.017

Ziaee, 2019, Spray drying of pharmaceuticals and biopharmaceuticals: Critical parameters and experimental process optimization approaches, Eur. J. Pharm. Sci., 127, 300, 10.1016/j.ejps.2018.10.026

Wanning, 2015, Pharmaceutical spray freeze drying, Int. J. Pharm., 488, 136, 10.1016/j.ijpharm.2015.04.053

Borm, 2008, Drug delivery and nanoparticles: Applications and hazards, Int. J. Nanomed., 3, 133

Wallace, 2012, Drug release from nanomedicines: Selection of appropriate encapsulation and release methodology, Drug Deliv. Transl. Res., 2, 284, 10.1007/s13346-012-0064-4

Bohnert, 2013, Plasma protein binding: From discovery to development, J. Pharm. Sci., 102, 2953, 10.1002/jps.23614

Patra, 2018, Nano based drug delivery systems: Recent developments and future prospects, J. Nanobiotechnol., 16, 71, 10.1186/s12951-018-0392-8

Khan, 2019, Nanoparticles: Properties, applications and toxicities, Arab. J. Chem., 12, 908, 10.1016/j.arabjc.2017.05.011

Grumezescu, A.M. (2017). Nano-and Microscale Drug Delivery Systems: Design and Fabrication, William Andrew.

Sumana, M., Thirumurugan, A., Muthukumaran, P., and Anand, K. (2020). Biodegradable Natural Polymeric Nanoparticles as Carrier for Drug Delivery. Integrative Nanomedicine for New Therapies, Springer.

Singh, 2009, Nanoparticle-based targeted drug delivery, Exp. Mol. Pathol., 86, 215, 10.1016/j.yexmp.2008.12.004

Shen, 2013, In vitro dissolution testing strategies for nanoparticulate drug delivery systems: Recent developments and challenges, Drug Deliv. Transl. Res., 3, 409, 10.1007/s13346-013-0129-z

Lee, 2015, Controlled drug release from pharmaceutical nanocarriers, Chem. Eng. Sci., 125, 75, 10.1016/j.ces.2014.08.046

Fu, 2010, Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems, Expert Opin. Drug Deliv., 7, 429, 10.1517/17425241003602259

Truhaut, 1977, Ecotoxicology: Objectives, principles and perspectives, Ecotoxicol. Environ. Saf., 1, 151, 10.1016/0147-6513(77)90033-1

Kahru, 2010, From ecotoxicology to nanoecotoxicology, Toxicology, 269, 105, 10.1016/j.tox.2009.08.016

Ali, 2019, Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation, J. Chem., 2019, 1

Kahru, 2004, Biotest—And chemistry-based hazard assessment of soils, sediments and solid wastes, J. Soils Sediments, 4, 267, 10.1007/BF02991123

Costa, 2020, Nanotoxicology and Nanosafety: Safety-By-Design and Testing at a Glance, Int. J. Environ. Res. Public Health, 17, 4657, 10.3390/ijerph17134657

Bundschuh, 2018, Nanoparticles in the environment: Where do we come from, where do we go to?, Environ. Sci. Eur., 30, 1, 10.1186/s12302-018-0132-6

Gupta, 2018, Nanoparticles in daily life: Applications, toxicity and regulations, J. Environ. Pathol. Toxicol. Oncol., 37, 209, 10.1615/JEnvironPatholToxicolOncol.2018026009

Robertson, 2016, Purification of nanoparticles by size and shape, Sci. Rep., 6, 1, 10.1038/srep27494

Hanauer, 2007, Separation of nanoparticles by gel electrophoresis according to size and shape, Nano Lett., 7, 2881, 10.1021/nl071615y

Chenthamara, 2019, Therapeutic efficacy of nanoparticles and routes of administration, Biomater. Res., 23, 1, 10.1186/s40824-019-0166-x

Jain, 2019, In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery, Artif. CellsNanomed. Biotechnol., 47, 524, 10.1080/21691401.2018.1561457

Pinelli, F., Perale, G., and Rossi, F. (2020). Coating and functionalization strategies for nanogels and nanoparticles for selective drug delivery. Gels, 6.

Lombardo, D., Kiselev, M.A., and Caccamo, M.T. (2019). Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. Nanomater., 2019.

Maurya, 2019, Strategic use of nanotechnology in drug targeting and its consequences on human health: A focused review, Interv. Med. Appl. Sci., 11, 38

Shi, 2018, Active-targeting docetaxel-loaded mixed micelles for enhancing antitumor efficacy, J. Mol. Liq., 264, 172, 10.1016/j.molliq.2018.05.039

Fam, S.Y., Chee, C.F., Yong, C.Y., Ho, K.L., Mariatulqabtiah, A.R., and Tan, W.S. (2020). Stealth Coating of Nanoparticles in Drug-Delivery Systems. Nanomaterials, 10.

Palanikumar, 2020, pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics, Commun. Biol., 3, 1, 10.1038/s42003-020-0817-4

Lima, 2020, Understanding the Lipid and protein corona formation on Different Sized Polymeric Nanoparticles, Sci. Rep., 10, 1, 10.1038/s41598-020-57943-6

Calzoni, E., Cesaretti, A., Polchi, A., Di Michele, A., Tancini, B., and Emiliani, C. (2019). Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J. Funct. Biomater., 10.