Polymeric Hole Transport Materials for Red CsPbI3 Perovskite Quantum-Dot Light-Emitting Diodes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Lee, 2012, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338, 643, 10.1126/science.1228604
Burschka, 2013, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499, 316, 10.1038/nature12340
Yang, 2015, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348, 1234, 10.1126/science.aaa9272
Wei, 2016, Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals, Nat. Photonics, 10, 333, 10.1038/nphoton.2016.41
Protesescu, 2015, Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut, Nano Lett., 15, 3692, 10.1021/nl5048779
Song, 2015, Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3), Adv. Mater., 27, 7162, 10.1002/adma.201502567
Pan, 2016, Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering, Adv. Mater., 28, 8718, 10.1002/adma.201600784
Li, 2017, 50-Fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control, Adv. Mater., 29, 1603885, 10.1002/adma.201603885
Dong, 2020, Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots, Nat. Nanotechnol., 15, 668, 10.1038/s41565-020-0714-5
Song, 2018, Organic–inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%, Adv. Mater., 30, 1805409, 10.1002/adma.201805409
Lin, C.-C., Yeh, S.-Y., Huang, W.-L., Xu, Y.-X., Huang, Y.-S., Yeh, T.-H., Tien, C.-H., Chen, L.-C., and Tseng, Z.-L. (2020). Using Thermally Crosslinkable Hole Transporting Layer to Improve Interface Characteristics for Perovskite CsPbBr3 Quantum-Dot Light-Emitting Diodes. Polymers, 12.
Chiba, 2018, Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices, Nat. Photonics, 12, 681, 10.1038/s41566-018-0260-y
Chiba, 2017, High-efficiency perovskite quantum-dot light-emitting devices by effective washing process and interfacial energy level alignment, ACS Appl. Mater. Interfaces, 9, 18054, 10.1021/acsami.7b03382
Wu, 2018, Surface ligand modification of cesium lead bromide nanocrystals for improved light-emitting performance, Nanoscale, 10, 4173, 10.1039/C7NR09126E
Pan, 2017, Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes, J. Am. Chem. Soc., 140, 562, 10.1021/jacs.7b10647
Li, 2018, Surface ligand engineering for near-unity quantum yield inorganic halide perovskite QDs and high-performance QLEDs, Chem. Mater., 30, 6099, 10.1021/acs.chemmater.8b02544
Cai, 2019, Trimethylsilyl iodine-mediated synthesis of highly bright red-emitting CsPbI3 perovskite quantum dots with significantly improved stability, Chem. Mater., 31, 881, 10.1021/acs.chemmater.8b04049
Li, 2020, A zinc non-halide dopant strategy enables efficient perovskite CsPbI 3 quantum dot-based light-emitting diodes, Mater. Chem. Front., 4, 1444, 10.1039/C9QM00734B
Salim, 2020, Optimizing Performance and Operational Stability of CsPbI3 Quantum-Dot-Based Light-Emitting Diodes by Interface Engineering, ACS Appl. Electron. Mater., 2, 2525, 10.1021/acsaelm.0c00431
Shi, 2020, In Situ Ligand Bonding Management of CsPbI3 Perovskite Quantum Dots Enables High-Performance Photovoltaics and Red Light-Emitting Diodes, Angew. Chem., 132, 22414, 10.1002/ange.202010440
Hassanabadi, 2020, Ligand & band gap engineering: Tailoring the protocol synthesis for achieving high-quality CsPbI 3 quantum dots, Nanoscale, 12, 14194, 10.1039/D0NR03180A
Chen, 2019, Short-Chain Ligand-Passivated Stable α-CsPbI3 Quantum Dot for All-Inorganic Perovskite Solar Cells, Adv. Funct. Mater., 29, 1900991, 10.1002/adfm.201900991
Sanehira, 2017, Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells, Sci. Adv., 3, eaao4204, 10.1126/sciadv.aao4204
Swarnkar, 2016, Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics, Science, 354, 92, 10.1126/science.aag2700
Yuan, 2018, Band-aligned polymeric hole transport materials for extremely low energy loss α-CsPbI3 perovskite nanocrystal solar cells, Joule, 2, 2450, 10.1016/j.joule.2018.08.011
Xue, 2018, Surface ligand management for stable FAPbI3 perovskite quantum dot solar cells, Joule, 2, 1866, 10.1016/j.joule.2018.07.018
Zhao, 2019, High efficiency perovskite quantum dot solar cells with charge separating heterostructure, Nat. Commun., 10, 1
Wang, 2020, High-Efficiency Perovskite Quantum Dot Hybrid Nonfullerene Organic Solar Cells with Near-Zero Driving Force, Adv. Mater., 32, 2002066, 10.1002/adma.202002066
Chao, 2019, Cross-linkable hole transporting layers boost operational stability of high-performance quantum dot light-emitting device, Org. Electron., 71, 206, 10.1016/j.orgel.2019.05.030
Liu, 2017, Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield, ACS Nano, 11, 10373, 10.1021/acsnano.7b05442
Gan, 2019, α-CsPbI3 colloidal quantum dots: Synthesis, photodynamics, and photovoltaic applications, ACS Energy Lett., 4, 1308, 10.1021/acsenergylett.9b00634
You, 2014, Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility, ACS Nano, 8, 1674, 10.1021/nn406020d