Polymer gels impregnated with gold nanoparticles implemented for measurements of radiation dose enhancement in synchrotron and conventional radiotherapy type beams

Springer Science and Business Media LLC - Tập 35 - Trang 301-309 - 2012
Wan Nordiana Rahman1,2, Christopher James Wong3, Trevor Ackerly3, Naoto Yagi4, Moshi Geso1
1Division of Medical Radiation, School of Medical Sciences, RMIT University, Bundoora, Australia
2School of Health Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
3William Buckland Radiotherapy Centre, The Alfred Hospital, Prahran, Australia
4Japanese Synchrotron Radiation Research Institute, Sayo-gun, Japan

Tóm tắt

Normoxic type polyacrylamide gel (nPAG) dosimeters are established for dose quantification in three-dimensions for radiotherapy and hence represent an adequate dosimeter for quantification of the dose variation due to the existence of the gold nanoparticles (AuNPs) in the target during irradiation. This work compared the degree of polymerisation in gel doped with nanoparticles (nPAG–AuNP) with control gel samples when irradiated by various sources. Samples were irradiated with a synchrotron radiation source of mean energy 125 keV, 80 kV X-ray beams from superficial therapy machine (SXRT), 6 MV X-rays and 6 MeV electron beams from linear accelerator. Analysis of the dose–response relation was used to determine a dose enhancement factor (DEF) of 1.76 ± 0.34 and 1.64 ± 0.44 obtained for samples irradiated with kilovoltage X-rays energy from synchrotron source and SXRT respectively. Similarly, including AuNPs in gel results in a DEF of approximately 1.37 ± 0.35 when irradiated by an electron beam and 1.14 ± 0.28 for high energy X-ray beams. The results demonstrate the use of AuNPs embedded in polymer gels for measuring the enhancement of radiation caused by metallic nanoparticles.

Tài liệu tham khảo

Burnet NG, Wurm R, Nyman J, Peacock JH (1996) Normal tissue radiosensitivity—How important is it? Clin Oncol 8:25–34 Barth RF, Soloway AH, Fairchild RG (1990) Boron neutron capture therapy of cancer. Cancer Res 50:1061–1070 Adhikari JS, Khaitan D, Arya MB, Dwarakanath BS (2005) Heterogeneity in the radiosensitizing effects of the DNA ligand Hoechst-33342 in human tumor cell lines. J Can Res Ther 1:151–161 Dawson P, Penhaligon M, Smith E, Saunders J (1987) Iodinated contrast agents as “radiosensitisers” Br J Radiol 60:201–203 Santos-Mello R, Callisen H, Winter J, Kagan AR, Norman A (1982) Radiation dose enhancement in tumors with iodine. Med Phys 10:75–78 Solberg TD, Iwamoto KS, Norman A (1992) Calculation of radiation dose enhancement factors for dose enhancement therapy of brain tumours. Phys Med Biol 37:439–443 Meesat R, Jean-Paul JG, Khalil A, Lepage M (2009) Evaluation of the dose enhancement of iodinated compounds by polyacrylamide gel dosimetry. Phys Med Biol 54:5909–5917 Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309–N315 Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327 Chang MY, Shiau AL, Chen YH, Chang CJ, Chen HHW, Wu CL (2008) Increased apoptotic potential and dose enhancing effect of gold nanoparticles in combination with single dose clinical electron beams on tumor bearing mice. Cancer Sci 99:1479–1484 Zhang X, Xing JZ, Chen J, Ko L, Amanie J, Gulavita S, Pervez N, Yee D, Moore R, Roa W (2008) Enhanced radiation sensitivity in prostate cancer by gold nanoparticles. Clin Invest Med 31:E160–E167 Kong T, Zeng J, Wang X, Yang X, Yang J, McQuarrie S, McEwan A, Roa W, Chen J, Xing JZ (2008) Enhancement of radiation cytotoxicity in breast cancer cells by localized attachment of gold nanoparticles. Small 4:1537–1543 Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM (2008) Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol 60:977–985 Liu CJ, Wang CH, Chien CC, Yang TY, Chen ST, Leng WH, Lee CF, Lee KH, Hwu Y, Lee YC, Cheng CL, Yang CS, Chen YJ, Je JH, Margaritondo G (2008) Enhanced X-ray irradiation-induced cancer cell damage by gold nanoparticles treated by a new synthesis method of polyethylene glycol modification. Nanotechnology 19:295104 Rahman WN, Bishara N, Ackerly T, He C, Jackson P, Wong C, Davidson R, Geso M (2009) Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine: Nanotechnology. Biol Med 5:136–142 Cho SH (2005) Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Phys Med Biol 50:N163–N173 McMahon SJ, Mendenhall MH, Jain S, Currell F (2008) Radiotherapy in the presence of contrast agents: a general figure of merit and its application to gold nanoparticles. Phys Med Biol 53:5635–5651 Cho SH, Jones BL, Krishnan S (2009) The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/X-ray sources. Phys Med Biol 54:4889–4905 Roeske JC, Nunez L, Hoggarth M, Labay E, Weichselbaum RR (2007) Characterization of the theoretical radiation dose enhancement from nanoparticles. Technol Cancer Res Treat 6:395–401 Garnica-Garza HM (2009) Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors. Phys Med Biol 54:5411–5425 Morris KN, Weil MD, Malzbender R (2006) Radiochromic film dosimetry of contrast-enhanced radiotherapy (CERT). Phys Med Biol 51:5915–5925 Ohuchi H (2007) High sensitivity radiochromic film dosimetry using an optical common-mode rejection and a reflective mode flatbed color scanner. Med Phys 34:4207–4212 Baldock C, DeDeene Y, Doran S, Ibbott G, Jirasek A, Lepage M, McAuley KB, Oldham M, Schreiner LJ (2010) Polymer gel dosimetry. Phys Med Biol 55:R1–R63 Maryanski MJ, Schulz RJ, Ibbott GS, Gatenby JC, Xie J, Horton D, Gore JC (1994) Magnetic resonance imaging of radiation dose distributions using a polymer-gel dosimeter. Phys Med Biol 39:1437–1455 Brown S, Venning A, De Deene Y (2008) Radiological properties of the PRESAGE and PAGAT polymer dosimeters. Appl Radiat Isot 66:1970–1974 Boudou C, Tropres I, Esteve F, Elleaume H (2006) Preliminary study of a normoxic polyacrylamide gel doped with iodine. J Phys Conf Ser 56:145–148 Boudou C, Tropres I, Rousseau J, Lamalle L, Adam JF, Esteve F, Elleaume H (2007) Polymer gel dosimetry for synchrotron stereotactic radiotherapy and iodine dose-enhancement measurement. Phys Med Biol 52:4881–4892 Gastaldo J, Boudou C, Lamalle L, Tropres I, Corde S, Sollier A, Rucka G, Elleaume H (2008) Normoxic polyacrylamide gel doped with iodine: response versus X-ray energy. Eur J Radiol 68S:S118–S120 Herold DM, Das IJ, Stobbe CC, Iyer RV, Chapman JD (2000) Gold microsphere: a selective technique for producing biologically effective dose enhancement. Int J Radiat Biol 76:1357–1364 Corde S, Adam JF, Biston MC, Joubert A, Charvet AM, Esteve F, Le Bas JF, Elleaume H, Balosso J (2005) Sensitivity variation of doped Fricke gel irradiated with monochromatic synchrotron X-rays between 33.5 and 80 keV. Radiat Prot Dosim 117:425–431 Marques T, Schwarcke M, Garrido C, Zucolotto V, Baffa O, Nicolucci P (2010) Gel dosimetry analysis of gold nanoparticle application in kilovoltage radiation therapy. IC3D Dose: The 6th International Conference on 3D Radiation Dosimetry. J Phys Conf Ser 250:012084 Wong CJ, Ackerly T, He C, Patterson W, Powell CE, Qiao G, Solomon DH, Meder R, Geso M (2009) Small field size dose-profile measurements using gel dosimeters, gafchromic films and micro-thermoluminescent dosimeters. Radiat Meas 44:249–256 McJury M, Oldham M, Cosgrove VP, Murphy PS, Doran S, Leach MO, Webb S (2000) Radiation dosimetry using polymer gels: methods and applications. Brit J Radiol 73:919–929 De Deene Y, Hurley C, Venning A, Vergote K, Mather M, Healy BJ, Baldock C (2002) A basic study of some normoxic polymer gel dosimeters. Phys Med Biol 47:3441–3463 Ohno Y, Torikoshi M, Suzuki M, Umetani K, Imai Y, Uesugi K, Yagi N (2008) Dose distribution of a 125 keV mean energy microplanar X-ray beam for basic studies on microbeam radiotherapy. Med Phys 35:3252–3258 Torikoshi M, Ohno Y, Yagi N, Umetani K, Furusawa Y (2008) Dosimetry for a microbeam array generated by synchrotron radiation at SPring-8. Eur J Radiol 68:S114–S117 Geso M, Ackerly T, Brown S, Chua Z, He C, Wong CJ (2008) Determination of dosimetric perturbations caused by aneurysm clip in stereotactic radiosurgery using gel phantoms and EBT-Gafchromic films. Med Phys 35:744–752 Berger MJ, Hubbell JH, Seltzer SM, Chang J, Coursey JS, Sukumar R, Zucker DS, Olson K (1998) XCOM: photon cross sections NIST standard reference database 8 (XGAM) Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticles uptake into mammalian cells. Nano Lett 6:662–668 Doran SJ, Brochard T, Adamovics J, Krstajic N, Brauer-Krisch E (2010) An investigation of the potential of optical computed tomography for imaging of synchrotron-generated X-rays at high spatial resolution. Phys Med Biol 55:1531–1547 Abdul Rahman AT, Brauer-Krisch E, Brochard T, Adamovics J, Clowes SK, Bradley D, Doran SJ (2011) Sophisticated test objects for the quality assurance of optical computed tomography scanners. Phys Med Biol 56:4177–4199 Serduc R, Bouchet A, Brauer-Krisch E, Laissue JA, Spiga J, Sarun S, Bravin A, Fonta C, Renaud L, Boutonnat J, Siegbahn EA, Esteve F, Le Duc G (2009) Synchrotron microbeam radiation therapy for rat brain tumor palliation-influence of the microbeam width at constant valley dose. Phys Med Biol 54:6711–6724