Polymer‐derived ceramic aerogels as sorbent materials for the removal of organic dyes from aqueous solutions

Journal of the American Ceramic Society - Tập 101 Số 2 - Trang 821-830 - 2018
Maria Concetta Bruzzoniti1, Marta Appendini1, Luca Rivoira1, Barbara Onida2, Massimo Del Bubba3, Prasanta Jana4, Gian Domenico Sorarù4
1Department of chemistry, University of Turin, Turin, Italy
2Department of Applied Science and Technology Polytechnic of Torino Torino Italy
3Department of Chemistry ‘Ugo Schiff’, University of Florence, Sesto Fiorentino, Italy
4Department of Industrial Engineering, University of Trento, Trento, Italy

Tóm tắt

AbstractPolymer‐derived SiC and SiOC aerogels have been synthesized and characterized both from the microstructural point of view and as sorbent materials for removing organic dyes (Methylene Blue, MB, and Rhodamine B, RB) from water solutions. Their adsorbent behavior has been compared with a polymer‐derived SiC foam and a commercial mesoporous silica. The aerogels can efficiently remove MB and RB from water solution and their capacity is higher compared to the SiC foams due to the higher surface area. The SiOC aerogel remains monolithic after the water treatment (allowing for an easy removal without the need of a filtration step) and its maximum capacity for removing MB is 42.2 mg/g, which is higher compared to the studied mesoporous silica and many C‐based porous adsorbents reported in the literature. The reason for this high adsorption capacity has been related to the unique structure of the polymer‐derived SiOC, which consists of an amorphous silicon oxycarbide network and a free carbon phase.

Từ khóa


Tài liệu tham khảo

10.1002/9780470880630

10.1111/j.1551-2916.2010.03876.x

10.1039/c2ta00727d

10.1016/S0022-3093(01)00678-0

10.1111/j.1151-2916.1995.tb08373.x

10.1016/j.jnoncrysol.2009.10.006

10.1246/bcsj.20110357

10.1039/C5TA06669G

10.1111/j.1151-2916.1998.tb02489.x

10.1023/A:1008779915809

10.1111/j.1151-2916.2002.tb00308.x

10.1016/S0955-2219(00)00101-1

10.1111/j.1551-2916.2008.02275.x

10.1111/jace.12491

10.1111/j.1551-2916.2009.03539.x

10.1021/am502811f

10.1016/j.electacta.2013.12.037

10.1038/srep41049

10.2109/jcersj.114.425

10.3390/ma7031927

10.1016/j.mser.2016.05.001

10.1039/c2jm00020b

10.1002/adem.201400134

10.1016/j.jeurceramsoc.2015.04.018

10.1111/jace.14323

10.1061/(ASCE)HZ.1944-8376.0000038

10.1002/9783527616039

10.1016/j.jenvman.2011.09.012

10.1080/10643380903218376

10.1016/j.jenvman.2008.11.017

10.1081/SS-100000853

10.1016/j.apsusc.2016.06.158

10.1007/s11356-015-5755-1

10.1016/j.chroma.2009.05.052

10.1016/j.apsusc.2013.10.035

10.1016/j.micromeso.2011.10.015

10.1016/j.apcatb.2011.12.036

10.1016/j.jeurceramsoc.2016.02.003

10.1016/j.colsurfa.2016.03.021

10.1038/srep07910

10.1016/j.ceramint.2016.09.045

Sorarù GD, 2016, Handbook of Sol‐Gel Science and Technology

10.1557/jmr.2015.44

10.1016/j.aej.2014.11.007

10.1016/j.matdes.2016.12.010

10.4103/2229-5186.79345

10.1021/cm00042a016

10.1007/BF00551739

Socrates G, 2004, Infrared and Raman Characteristic Group Frequencies: Tables and Charts

10.1016/j.matchemphys.2004.02.011

10.1016/j.jeurceramsoc.2015.10.038

10.1016/j.ceramint.2016.04.101

10.1016/j.scriptamat.2013.07.009

10.1023/A:1008723813991

Chemicalize.2016; Available from:www.chemicalize.org.

10.1016/j.mseb.2009.12.033

10.1007/s11356-016-7384-8

10.1007/s10661-016-5155-0

10.1016/j.biortech.2005.01.039

10.1016/j.biortech.2005.02.050

10.1016/j.desal.2005.10.032

10.1016/j.dyepig.2004.06.016

10.1016/j.cej.2008.02.009