Polymer-based ceramifiable composites for flame retardant applications: A review
Tài liệu tham khảo
Chen, 2013, Increasing the efficiency of intumescent flame retardant polypropylene catalyzed by polyoxometalate based ionic liquid, J. Mater. Chem., 1, 15242, 10.1039/c3ta13538a
Peng, 2008, A novel charring agent containing caged bicyclic phosphate and its application in intumescent flame retardant polypropylene systems, J. Ind. Eng. Chem., 14, 589, 10.1016/j.jiec.2008.05.011
Cao, 2013, Synthesis of N-alkoxy hindered amine containing silane as a multifunctional flame retardant synergist and its application in intumescent flame retardant polypropylene, Ind. Eng. Chem. Res., 52, 309
Li, 2018, Tough and flame-retardant poly(lactic acid) composites prepared via reactive blending with biobased ammonium phytate and in situ formed crosslinked polyurethane, Compos. Commun., 8, 52, 10.1016/j.coco.2018.04.001
Tan, 2016, Piperazine-modified ammonium polyphosphate as monocomponent flame-retardant hardener for epoxy resin: flame retardance, curing behavior and mechanical property, Polym. Chem., 7, 3003, 10.1039/C6PY00434B
Shao, 2014, Ammonium polyphosphate chemically-modified with ethanolamine as an efficient intumescent flame retardant for polypropylene, J. Mater. Chem. A., 2, 13955, 10.1039/C4TA02778G
Gao, 2020, Flame retardant effect and mechanism of nanosized NiO as synergist in PLA/APP/CSi-MCA composites, Compos. Commun., 17, 170, 10.1016/j.coco.2019.12.007
Sun, 2017, Flame retardant and mechanically tough poly(lactic acid) biocomposites via combining ammonia polyphosphate and polyethylene glycol, Compos. Commun., 6, 1, 10.1016/j.coco.2017.07.005
Bernardo, 2014, Novel synthesis of Eu-doped SiAlON luminescent materials from a preceramic polymer and nano-sized fillers, J. Asian Ceram. Soc., 2, 158, 10.1016/j.jascer.2014.03.002
Fei, 2018, Preparation of ZrC/SiC porous self-supporting monoliths via sol-gel process using polyethylene glycol as phase separation inducer, J. Eur. Ceram. Soc., 38, 4806, 10.1016/j.jeurceramsoc.2018.06.033
Cao, 2013, Synthesis, characterization and ceramization of a liquid hyperbranched polycarbosilane with vinyl groups, Rare Met. Mater. Eng., 42, 380
Di, 2015, A novel EVA composite with simultaneous flame retardation and ceramifiable capacity, RSC Adv., 5, 51248, 10.1039/C5RA05781G
Hanu, 2005, Preferential orientation of muscovite in ceramifiable silicone composites, Mater. Sci. Eng., 398, 180, 10.1016/j.msea.2005.03.022
Li, 2016, A novel high-temperature-resistant polymeric material for cables and insulated wires via the ceramization of mica-based ceramifiable EVA composites, Compos. Sci. Technol., 132, 116, 10.1016/j.compscitech.2016.07.007
Gong, 2017, Improved self-supporting property of ceramifying silicone rubber composites by forming crystalline phase at high temperatures, J. Alloys Compd., 706, 322, 10.1016/j.jallcom.2017.02.252
Li, 2018, Improving fire retardancy of ceramifiable polyolefin system via a hybrid of zinc borate@melamine cyanurate, Polym. Degrad. Stabil., 153, 325, 10.1016/j.polymdegradstab.2018.05.012
Fang, 2018, A facile way to prepare phosphorus-nitrogen-functionalized graphene oxide for enhancing the flame retardancy of epoxy resin, Compos. Commun., 10, 97, 10.1016/j.coco.2018.08.001
Tian, 2016, Thermal processing of silicones for green, scalable, and healable superhydrophobic coatings, Adv. Mater., 28, 3677, 10.1002/adma.201506446
Li, 2019, In situ reactive self-assembly of a graphene oxide nano-coating in polymer foam materials with synergistic fire shielding properties, J. Mater. Chem. A., 7, 27032, 10.1039/C9TA09372A
Cao, 2020, One-step and green synthesis of lightweight, mechanically flexible and flame-retardant polydimethylsiloxane foam nanocomposites via surface-assembling ultralow content of graphene derivative, Chem. Eng. J., 393, 10.1016/j.cej.2020.124724
Wu, 2018, Efficient flame detection and early warning sensors on combustible materials using hierarchical graphene oxide/silicone coatings, ACS Nano, 12, 416, 10.1021/acsnano.7b06590
Belot, 1992, Thermal redistribution reactions in cross-linked polysiloxanes, J. Polym. Sci., Part A: Polym. Chem., 30, 613, 10.1002/pola.1992.080300413
Radhakrishnan, 2015, New method for evaluation of kinetic parameters and mechanism of degradation from pyrolysis–GC studies: thermal degradation of polydimethylsiloxanes, J. Appl. Polym. Sci., 73, 441, 10.1002/(SICI)1097-4628(19990718)73:3<441::AID-APP16>3.0.CO;2-J
Anyszka, 2015, Influence of surface-modified montmorillonites on properties of silicone rubber-based ceramizable composites, J. Therm. Anal. Calorim., 119, 111, 10.1007/s10973-014-4156-x
Li, 2019, Simultaneously improved flame retardance and ceramifiable properties of polymer-based composites via the formed crystalline phase at high temperature, ACS Appl. Mater. Interfaces, 11, 7459, 10.1021/acsami.8b21664
Xiong, 2012, High strength retention and dimensional stability of silicone/alumina composite panel under fire, Fire Mater., 36, 254, 10.1002/fam.1107
Pä™Dzich, 2014, Ceramizable composites for fire resistant applications, Key Eng. Mater., 602–603, 290, 10.4028/www.scientific.net/KEM.602-603.290
Anyszka, 2015, Boron oxide as a fluxing agent for silicone rubber-based ceramizable composites, 13, 125
Hayashida, 2003, Flame retardant mechanism of polydimethylsiloxane material containing platinum compound studied by analytical pyrolysis techniques and alkaline hydrolysis gas chromatography, Polymer, 44, 5611, 10.1016/S0032-3861(03)00622-0
Delebecq, 2011, High residue contents indebted by platinum and silica synergistic action during the pyrolysis of silicone formulations, ACS Appl. Mater. Interfaces, 3, 869, 10.1021/am101216y
Wawrzyn, 2014, Flame-retarded bisphenol A polycarbonate/silicon rubber/bisphenol A bis(diphenyl phosphate): adding inorganic additives, Polym. Degrad. Stabil., 106, 74, 10.1016/j.polymdegradstab.2013.08.006
Wawrzyn, 2012, What reacts with what in bisphenol A polycarbonate/silicon rubber/bisphenol A bis(diphenyl phosphate) during pyrolysis and fire behavior?, Ind. Eng. Chem. Res., 51, 1244, 10.1021/ie201908s
Karrascha, 2010, Solid-state NMR on thermal and fire residues of bisphenol A polycarbonate/silicone acrylate rubber/bisphenol A Bis(diphenyl-phosphate) (PC/SiR/BDP) and PC/SiR/BDP/zinc borate (PC/SiR/BDP/ZnB) — Part II: the influence of SiR, Polym. Degrad. Stabil., 95, 2534, 10.1016/j.polymdegradstab.2010.07.030
Anyszka, 2012, Ceramizable silicone rubber-based composites, Adv. Sci. Technol., 66, 82
Hamdani, 2009, Flame retardancy of silicone-based materials, Polym. Degrad. Stabil., 94, 465, 10.1016/j.polymdegradstab.2008.11.019
Hanu, 2004, Development of polymer–ceramic composites for improved fire resistance, J. Mater. Process. Technol., 153–154, 401, 10.1016/j.jmatprotec.2004.04.104
A. Graeme, Y.B. Cheng, R.P. Burford, S. Robert, M. Jaleh, H. Alma, W. Christopher, G. Antonietta, B.K. Willis, P.D.D. Rodrigo, Fire-resistant silicone polymer compositions, USP. 7652090.
Anyszka, 2018, Effect of mineral filler additives on flammability, processing and use of silicone-based ceramifiable composites, Polym. Bull., 75, 1731, 10.1007/s00289-017-2113-0
Hu, 2016, The ceramifying process and mechanical properties of silicone rubber/ammonium polyphosphate/aluminium hydroxide/mica composites, Polym. Degrad. Stabil., 126, 196, 10.1016/j.polymdegradstab.2016.02.010
Hanu, 2004, Development of polymer–ceramic composites for improved fire resistance, J. Mater. Process. Technol., 153–154, 401, 10.1016/j.jmatprotec.2004.04.104
Mansouri, 2005, Formation of strong ceramified ash from silicone-based compositions, J. Mater. Sci., 40, 5741, 10.1007/s10853-005-1427-8
Mansouri, 2007, Investigation of the ceramifying process of modified silicone–silicate compositions, J. Mater. Sci., 42, 6046, 10.1007/s10853-006-1163-8
Dean, 2007, New ceramifying polymer materials for passive fire protection applications, J. Astm. Inter., 4, 1009
Alexander, 2013
Alexander, 2005
Marosi, 1998, Modified interfaces in multicomponent polypropylene fibers, Compos. Appl. Sci. Manuf., 29, 1305, 10.1016/S1359-835X(98)00047-5
Marosi, 2001, New reactive additives for interface modification in multicomponent polyolefin systems, Macromol. Symp., 176, 189, 10.1002/1521-3900(200112)176:1<189::AID-MASY189>3.0.CO;2-Z
Marosi, 2010, Flame‐retarded polyolefin systems of controlled interphase, Polym. Adv. Technol., 13, 1103, 10.1002/pat.284
Fang, 2020, A bio-based ionic complex with different oxidation states of phosphorus for reducing flammability and smoke release of epoxy resins, Compos. Commun., 17, 104, 10.1016/j.coco.2019.11.011
Marosi, 2002, Ceramic precursor in flame retardant systems, Polym. Degrad. Stabil., 77, 259, 10.1016/S0141-3910(02)00057-5
Thurn, 1999, Compression creep behaviour of precursor‐derived ceramics, J. Eur. Ceram. Soc., 19, 2317, 10.1016/S0955-2219(99)00093-X
Christ, 2010, High-temperature mechanical properties of Si-B-C-N precursor-derived amorphous ceramics and the applicability of deformation models developed for metallic glasses, J. Am. Ceram. Soc., 83, 3025, 10.1111/j.1151-2916.2000.tb01678.x
Zimmermann, 2002, High-temperature deformation of amorphous Si–C–N and Si–B–C–N ceramics derived from polymers, Acta Mater., 50, 1187, 10.1016/S1359-6454(01)00420-7
Zhang, 2011, Synthesis and characterization of a new liquid polymer precursor for Si–B–C–N ceramics, J. Mater. Sci., 46, 5940, 10.1007/s10853-011-5549-x
Bill, 2010, Precursor derived Si–B–C–N ceramics: thermolysis, amorphous state and crystallization, Appl. Organomet. Chem., 15, 777, 10.1002/aoc.242
Janakiraman, 2005, Phase evolution and crystallization in Si–B–C–N ceramics derived from a polyborosilazane precursor: microstructural characterization, J. Eur. Ceram. Soc., 25, 509, 10.1016/j.jeurceramsoc.2004.03.010
Xin, 2015, Synthesis and characterization of polyborosilazane/Cp2ZrCl2 hybrid precursor for Si-B-C-N-Zr multinary ceramic, Dalton Trans., 44, 15463, 10.1039/C5DT02073E
Kumar, 2013, Development and characterization of polymer–ceramic continuous fiber reinforced functionally graded composites for aerospace application, Aero. Sci. Technol., 26, 185, 10.1016/j.ast.2012.04.002
Hanu, 2004, Development of polymer–ceramic composites for improved fire resistance, J. Mater. Process. Technol., 153–154, 401, 10.1016/j.jmatprotec.2004.04.104
Kalita, 2003, Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling, Mater. Sci. Eng. C, 23, 611, 10.1016/S0928-4931(03)00052-3
Anyszka, 2014, Influence of surface-modified montmorillonites on properties of silicone rubber-based ceramizable composites, J. Therm. Anal. Calorim., 119, 111, 10.1007/s10973-014-4156-x
Anyszka, 2014, Effect of mineral fillers on properties of silicone rubber-based ceramizable composites. Part 2. Characteristics of a mineral phase produced by ceramization of composites, Przem. Chem., 93, 1684
Wang, 2015, Mechanical and ceramifiable properties of silicone rubber filled with different inorganic fillers, Polym. Degrad. Stabil., 121, 149, 10.1016/j.polymdegradstab.2015.09.003
Guo, 2016, Effect of the sintering temperature on the microstructure, properties and formation mechanism of ceramic materials obtained from polysiloxane elastomer-based ceramizable composites, J. Alloys Compd., 678, 499, 10.1016/j.jallcom.2016.04.030
Wang, 2012, Preparation of silane precursor microencapsulated intumescent flame retardant and its enhancement on the properties of ethylene–vinyl acetate copolymer cable, Compos. Sci. Technol., 72, 1042, 10.1016/j.compscitech.2012.03.022
Brink, 1997, Compositional dependence of bioactivity of glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2, J. Biomed. Mater. Res., 37, 114, 10.1002/(SICI)1097-4636(199710)37:1<114::AID-JBM14>3.0.CO;2-G
Ohtsuki, 1992, Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fluid, J. Non-Cryst. Solids, 143, 84, 10.1016/S0022-3093(05)80556-3
Palanisamy, 1988, Intelligent processing of ZnO-based ceramics, Am. Ceram. Soc. Bull., 67, 1695
Qing, 2007, Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume, Construct. Build. Mater., 21, 539, 10.1016/j.conbuildmat.2005.09.001
Zhang, 2009, Improved energy storage density in barium strontium titanate by addition of BaO-SiO2-B2O3 Glass, J. Am. Ceram. Soc., 92, 1871, 10.1111/j.1551-2916.2009.03109.x
Bicerano, 1985, Chemical bond approach to glass structure, J. Non-Cryst. Solids, 75, 169, 10.1016/0022-3093(85)90218-2
Rybiński, 2016, Effect of cenospheric fillers on the flammability and fire hazard of silicone rubber composites, J. Therm. Anal. Calorim., 125, 1373, 10.1007/s10973-016-5741-y
Anyszka, 2013, Thermal behavior of silicone rubber-based ceramizable composites characterized by Fourier transform infrared (FT-IR) spectroscopy and microcalorimetry, Appl. Spectrosc., 67, 1437, 10.1366/13-07045
Bienert, 2010, Characterization and improvement of LTCC composite materials for application at elevated temperatures, J. Eur. Ceram. Soc., 30, 369, 10.1016/j.jeurceramsoc.2009.05.023
Vivan, 2016, Experimental maxillary sinus augmentation using a highly bioactive glass ceramic, J. Mater. Sci. Mater. Med., 27, 41, 10.1007/s10856-015-5652-7
Marosi, 2002, Ceramic precursor in flame retardant systems, Polym. Degrad. Stabil., 77, 259, 10.1016/S0141-3910(02)00057-5
Jagan Mohini, 2015, Bioactivity studies on TiO2-bearing Na2O-CaO-SiO2-B2O3 glasses, Mater. Sci. Eng. C, Mater Bio. Appl., 57, 240, 10.1016/j.msec.2015.07.048
Bennett, 1998, The effect of fibre–matrix adhesion upon crack bridging in fibre reinforced composites, Compos. Appl. Sci. Manuf., 29, 1071, 10.1016/S1359-835X(98)00045-1
Pȩdzich, 2011, Optimisation of the ceramic phase for ceramizable silicone rubber-based composites, Adv. Sci. Technol., 66, 162, 10.4028/www.scientific.net/AST.66.162
Hanu, 2006, Thermal stability and flammability of silicone polymer composites, Polym. Degrad. Stabil., 91, 1373, 10.1016/j.polymdegradstab.2005.07.021
Mansouri, 2006, Pyrolysis behaviour of silicone-based ceramifying composites, Mater. Sci. Eng., A, 425, 7, 10.1016/j.msea.2006.03.047
Shao, 2010, Ceramifying fire-resistant polyethylene composites, Adv. Compos. Lett., 19, 159, 10.1177/096369351001900501
Al-Hassany, 2010, Fire-retardant and fire-barrier poly(vinyl acetate) composites for sealant application, Express Polym. Lett., 4, 79, 10.3144/expresspolymlett.2010.13
Gong, 2016, Optimisation of the ceramic-like body for ceramifiable EVA-based composites, Sci. Eng. Compos. Mater., 24, 599, 10.1515/secm-2015-0093
Xinhao, 2016, Improved ceramifiable properties of EVA composites with whitened and capsulized red phosphorus (WCRP), RSC Adv., 6, 96984, 10.1039/C6RA22126B
Zhao, 2018, Ceramifiable EVA/APP/SGF composites for improved ceramifiable properties, Polym. Degrad. Stabil., 150, 140, 10.1016/j.polymdegradstab.2018.02.006
Zhao, 2019, Three-dimensional cross-linking structures in ceramifiable EVA composites for improving self-supporting property and ceramifiable properties at high temperature, Polym. Degrad. Stabil., 162, 94, 10.1016/j.polymdegradstab.2019.02.003
Bourbigot, 1999, Recent advances in the use of zinc borates in flame retardancy of EVA, Polym. Degrad. Stabil., 64, 419, 10.1016/S0141-3910(98)00130-X
Bourbigot, 2001, Thermal degradation and combustion mechanism of EVA-magnesium hydroxide-zinc borate, ACS Symp. Ser., 797, 173, 10.1021/bk-2001-0797.ch014
Gao, 2009, Hydrothermal synthesis and standard molar enthalpy of formation of zinc borate of 4ZnO·B2O3·H2O, J. Chem. Eng. Data, 54, 2789, 10.1021/je900097y
Schubert, 2003, Structural characterization and chemistry of the industrially important zinc borate, Zn[B3O4(OH)3], Chem. Mater., 15, 866, 10.1021/cm020791z
Wu, 2012, Flammability of EVA/IFR (APP/PER/ZB system) and EVA/IFR/synergist (CaCO3, NG, and EG) composites, J. Appl. Polym. Sci., 126, 1917, 10.1002/app.36884
Xu, 2018, A novel and feasible approach for one-pack flame-retardant epoxy resin with long pot life and fast curing, Chem. Eng. J., 337, 30, 10.1016/j.cej.2017.12.086
Liu, 2008, A novel intumescent flame-retardant LDPE system and its thermo-oxidative degradation and flame-retardant mechanisms, Polym. Adv. Technol., 19, 1566, 10.1002/pat.1171
Wang, 2016, Layer-by-Layer assembly of multifunctional flame retardant based on brucite, 3-aminopropyltriethoxysilane, and alginate and its applications in ethylene-vinyl acetate resin, ACS Appl. Mater. Interfaces, 8, 9925, 10.1021/acsami.6b00998
Morgan, 2006, Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems, Polym. Adv. Technol., 17, 206, 10.1002/pat.685
Kiliaris, 2010, Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy, Prog. Polym. Sci., 35, 902, 10.1016/j.progpolymsci.2010.03.001
Levchik, 2016, A Review of recent progress in phosphorus-based flame retardants, J. Fire Sci., 24, 345, 10.1177/0734904106068426
Shao, 2014, An efficient mono-component polymeric intumescent flame retardant for polypropylene: preparation and application, ACS Appl. Mater. Interfaces, 6, 7363, 10.1021/am500789q
Shanks, 2010, Ceramifying fire-retardant and fire-barrier unsaturated polyester composites, Adv. Mater. Res., 123–125, 23, 10.4028/www.scientific.net/AMR.123-125.23
Anyszka, 2016, Thermal stability and flammability of styrene-butadiene rubber-based (SBR) ceramifiable composites, Materials, 9, 251, 10.3390/ma9070604
Imiela, 2015, Effect of carbon fibers on thermal properties and mechanical strength of ceramizable composites based on silicone rubber, J. Therm. Anal. Calorim., 124, 197, 10.1007/s10973-015-5115-x
Hamdani, 2010, Calcium and aluminium-based fillers as flame-retardant additives in silicone matrices. I. Blend preparation and thermal properties, Polym. Degrad. Stabil., 95, 1911, 10.1016/j.polymdegradstab.2010.04.013
Palacios, 2016, Self-forming 3D core-shell ceramic nanostructures for halogen-free flame retardant materials, ACS Appl. Mater. Interfaces, 8, 9462, 10.1021/acsami.6b01379
Li, 2018, Mechanism of significantly enhanced piezoelectric performance and stability in textured potassium-sodium niobate piezoelectric ceramics, J. Eur. Ceram. Soc., 38, 75, 10.1016/j.jeurceramsoc.2017.07.017
Wu, 2012, Preparation of EPDM flame-resistant cable materials, Appl. Mech. Mater., 151, 240, 10.4028/www.scientific.net/AMM.151.240
He, 2015, Effect of OMMT on ablative, thermal and flame retardant properties of ethylene propylene diene rubber (EPDM) composite, Plast. Rubber Compos., 44, 206, 10.1179/1743289815Y.0000000013
Canaud, 2000, Dielectric properties of flame resistant EPDM composites, Polym. Degrad. Stabil., 70, 259, 10.1016/S0141-3910(00)00124-5
Anyszka, 2016, Processing and properties of fire resistant EPDM rubber-based ceramifiable composites, High Tem. Mat. Pr Isc, 36, 963, 10.1515/htmp-2016-0059
Jian-ZhangLi, 2000, Dimensional stability and flame resistance of silicate-acetylated and -propionylated wood composites, J. Wood Chem. Technol., 20, 441, 10.1080/02773810009351893
Tanno, 1998, Antimicrobial TMSAH-added wood-inorganic composites prepared by the sol-gel process, Holzforschung, 52, 365, 10.1515/hfsg.1998.52.4.365
Li, 2005, Preparation and properties of acetylated and propionylated wood-silicate composite, Holzforschung, 55, 93
Tanno, 1998, Antimicrobial TMSAH-added wood-inorganic composites prepared by the sol-gel process, Holzforschung, 52, 365, 10.1515/hfsg.1998.52.4.365
Miyafuji, 1997, Fire-resisting properties in several TiO2 wood-inorganic composites and their topochemistry, Wood Sci. Technol., 31, 449
Miyafuji, 1996, Wood-inorganic composites prepared by the sol-gel process. V. Fire-resisting properties of the SiO2-P2O5-B2O3 wood-inorganic composites, J. Jpn. Wood Res. Soc., 42, 74
Miyafuji, 2001, Na2O-SiO2 wood-inorganic composites prepared by the sol-gel process and their fire-resistant properties, J. Wood Sci., 47, 483, 10.1007/BF00767902
Wang, 2014, Controllable fabrication of zinc borate hierarchical nanostructure on brucite surface for enhanced mechanical properties and flame retardant behaviors, ACS Appl. Mater. Interfaces, 6, 7223, 10.1021/am500380n
Lou, 2017, Preparation and properties of ceramifiable flame-retarded silicone rubber composites, J. Therm. Anal. Calorim., 130, 813, 10.1007/s10973-017-6448-4
Lou, 2019, Improved flame-retardant and ceramifiable properties of EVA composites by combination of ammonium polyphosphate and aluminum hydroxide, Polymers, 11, 125, 10.3390/polym11010125
Li, 2019, Study of flame‐retarded silicone rubber with ceramifiable property, Fire Mater., 2, 1